Show that: cot(A/2+45°)-tan(A/2-45°)=2cosA/1+SinA
Answers
Answered by
3
Answer:
ysiaiaoaoa
hsjaiaoa
jwoaoaoalaopa
ejosososodirieiao
isoaoduusyehwhhw
ieisisudhheuwjwjw
ejkeisisksjsjsj
ejkeisisksjsjsj
wjwjjehehdhdhd
ejjejsidieie
ieieieisidj
Answered by
9
Answer:LHS 1/tan(A/2+45) -tan(A/2-45)
=(1-tan〖A/2〗)/(1+tan〖A/2〗 )-(tan〖A/2〗-1)/(1+tan〖A/2〗 )
=2(1-tan〖A/2〗 )/(1+tan〖A/2〗 )
=(2(cos〖A/2-sin〖A/2〗) 〗)/(sin〖A/2〗+cos〖A/2〗 )
Multiplying and dividing by sin〖A/2〗+cos〖A/2〗
=(2(cos^2〖A/2-sin^2〖A/2〗) 〗)/cos^2〖A/2+2 sin〖A/2.cos〖A/2〗+〗 sin^2〖A/2〗 〗
=2cosA/(1+sinA)
Step-by-step explanation:
Similar questions