Math, asked by seemi1911, 1 year ago

Show that: cot(A/2+45°)-tan(A/2-45°)=2cosA/1+SinA​

Answers

Answered by aniket8810
3

Answer:

ysiaiaoaoa

hsjaiaoa

jwoaoaoalaopa

ejosososodirieiao

isoaoduusyehwhhw

ieisisudhheuwjwjw

ejkeisisksjsjsj

ejkeisisksjsjsj

wjwjjehehdhdhd

ejjejsidieie

ieieieisidj

Answered by abinashbhandari499
9

Answer:LHS 1/tan⁡(A/2+45) -tan⁡(A/2-45)

=(1-tan⁡〖A/2〗)/(1+tan⁡〖A/2〗 )-(tan⁡〖A/2〗-1)/(1+tan⁡〖A/2〗 )

=2(1-tan⁡〖A/2〗 )/(1+tan⁡〖A/2〗 )

=(2(cos⁡〖A/2-sin⁡〖A/2〗) 〗)/(sin⁡〖A/2〗+cos⁡〖A/2〗 )

Multiplying and dividing by  sin⁡〖A/2〗+cos⁡〖A/2〗  

=(2(cos^2⁡〖A/2-sin^2⁡〖A/2〗) 〗)/cos^2⁡〖A/2+2 sin⁡〖A/2.cos⁡〖A/2〗+〗  sin^2⁡〖A/2〗  〗  

=2cosA/(1+sinA)

Step-by-step explanation:

Similar questions