show that cot A. cot B + cot B .cot C +cot C. cot A =1
Answers
Answered by
71
Hey !!!
Let A , B and C are angle of triagle
Hence, sum of all angle of triangle= 180 °
Since,
<A + <B + <C = 180 °
<A + <B = 180° - <C
take cot on both side
we get ,
cot ( A + B ) = cot ( 180° - C)
cot ( A + B ) = - cotC
we know that ,
cot ( A + B ) = cotA * cotB - 1 / cotA + cotB
since, using this formula
cotA* cotB - 1 / cotA + cotB = - cotC
cotA* cotB - 1 = - ( cotA* cotC ) -( cotB * cotC)
cotA * cotB + cotA* cotC + cotB * cotC = 1
since, here prooved ♻
cotA* cotB + cotB* cotC + cotC * cotA = 1
______________________________
Let A , B and C are angle of triagle
Hence, sum of all angle of triangle= 180 °
Since,
<A + <B + <C = 180 °
<A + <B = 180° - <C
take cot on both side
we get ,
cot ( A + B ) = cot ( 180° - C)
cot ( A + B ) = - cotC
we know that ,
cot ( A + B ) = cotA * cotB - 1 / cotA + cotB
since, using this formula
cotA* cotB - 1 / cotA + cotB = - cotC
cotA* cotB - 1 = - ( cotA* cotC ) -( cotB * cotC)
cotA * cotB + cotA* cotC + cotB * cotC = 1
since, here prooved ♻
cotA* cotB + cotB* cotC + cotC * cotA = 1
______________________________
Answered by
13
Step-by-step explanation:
In ∆ ABC , A+B+C = π.
or, (A + B ) = (π - C ).
or, cot (A+B) = cot (π -C).
or, ( cotA.cotB -1)/(cotB + cotA) = - cotC.
or , cotA.cotB -1 = - cotB.cotC - cotC.cotA.
or , cotA.cotB +cotB.cotC + cotC.cotA. = 1
Proved
Hope it helps.
Thank You.
Similar questions