Math, asked by karan7763030051, 1 year ago

Show that cot² (B+C/2) + 1 = sec² (A/2)
Where A, B,C are angle of triangle​

Answers

Answered by IamIronMan0
1

Step-by-step explanation:

use basic identity and formulas

  \:  \:  \:  \:  \:  \:  \:  \:  \: \cot {}^{2} ( \frac{b + c}{2} ) + 1  = 1 + tan {}^{2} ( \frac{a}{2} ) \\  \\  \implies \: \cot {}^{2} ( \frac{b + c}{2} ) + 1  = 1 +  \cot {}^{2} (  \frac{\pi}{2} -  \frac{a}{2} )

compare

 \:  \:  \:  \:  \:  \:  \:  \:  \frac{b + c}{2}  = \frac{\pi}{2} -  \frac{a}{2}  \\ \\   \implies \: b + c = \pi - a \\  \implies \: a + b + c = \pi

Hence proved

Answered by misraabhi02
0

Answer:

Step-by-step explanation:

In ΔABC

∠A + ∠B + ∠C = 180°

∠B + ∠C = 180° - ∠A

(∠B + ∠ C) / 2 = 90° - ∠A/2

cot² (B +  C / 2) + 1 = cot² (90° - A/2) + 1

                               = tan²A/2 + 1

                               = sec² (A/2)

Similar questions