Math, asked by Mathephobia, 9 months ago

show that (cotA-1+cosecA) /(CotA+1-cosecA)=cotA+cosecA​

Answers

Answered by kavitaprasoon
1

Answer:

ey Friend :-)

Here is your answer

=> 1 / (cosecA - cotA) . . . . . . . . . . .multiply top & bottom by (cosecA + cotA)  

=> (cosecA + cotA) /(cosec^2A - cot^2A) . . . . . . .use cosec^2A = 1 +                                                                                                                        cot^2A  

=> (cosecA +cotA) / 1  

=> cosecA + cotA

RHS = LHS  

Hence, proofed.

i think it helped you

kindly mark me as brainlist

Answered by pulakmath007
3

\huge\boxed{\underline{\underline{\green{\tt Solution}}}} </p><p>

  \displaystyle \: \frac{CotA - 1 + CosecA}{CotA  + 1  - CosecA}

 =   \displaystyle \: \frac{CotA  + CosecA - 1}{CotA    - CosecA + 1}

 =   \displaystyle \: \frac{CotA  + CosecA - ( {Cosec}^{2}A -  {Cot}^{2}A)  }{CotA  + 1  - CosecA}

 =\frac{(CotA  + CosecA )-(CosecA  + CotA )(CosecA   -  CotA ) }{CotA  + 1  - CosecA}

 =   \frac{(CotA  + CosecA )(CotA  + 1  - CosecA)}{(CotA  + 1  - CosecA)}

 = (CotA  + CosecA)

Similar questions