Math, asked by Anasuya12, 1 year ago

Show that cotA*cotB+cotB*cotC+cotC*cotA=1, if A+ B +C=π

Answers

Answered by balakrishna40
16

a + b = \pi - c

 \cot(a + b)  =  \cot(\pi - c)

 \frac{ cota \:  cotb \:  - 1}{ cotb +  cota  } =  -  \cot(c)

 \cot(a)  \cot(b)  - 1 =  -  \cot(b)  \cot(c)  -  \cot(c)  \cot(a)

 \cot a . cotb  +  cotb. cotc +  cotc. cota = 1

Similar questions