show that cube of any positive integer is in the form of 4m, 4m+1,4m+2
Answers
Let the positive integer be a then, according to Euclid's division lemma
a = bq + r
Here,
b = 4
r = 0,1,2 and 3
Now,
a = 4q
a = 4q + 1
a = 4q + 2
a = 4q + 3
Where m = 16
where m = 16 + 12 + 4q
where m = 16 + 24 + 12q
So, now the cube of positive integer a is in the form of 4m, 4m + 1 and 4m + 2
Correct Question :-
Show that cube of any positive integer is in the form of 4m, 4m + 1, 4m + 3
Solution :-
We know that, a number is of the form of
a = bq + r, where a, b are positive integers and 0 ≤ r < b
Now, a number can be of the form of
a = 4q
a = 4q + 1
a = 4q + 2
or, a = 4q + 3
if, b is 4
So, for the first case :-
a = 4q
⇒ a³ = (4q)³
⇒ a³ = 64q³
⇒ a³ = 4(16q³)
⇒ a³ = 4m
where, m = 16q³
Second case :-
a = 4q + 1
⇒ a³ = (4q + 1)³
⇒ a³ = 64q³ + 48q² + 12q + 1
⇒ a³ = 4(16q³ + 12q² + 3q) + 1
⇒ a³ = 4m + 1
where, m = (16q³ + 12q² + 3q)
Third Case :-
a = 4q + 2
⇒ a³ = (4q + 2)³
⇒ a³ = 64q³ + 96q² + 48q + 8
⇒ a³ = 4(16q³ + 24q² + 12q + 2)
⇒ a³ = 4m
where, m = (16q³ + 24q² + 12q + 2)
Fourth Case :-
a = 4q + 3
⇒ a³ = (4q + 3)³
⇒ a³ = 64q³ + 576q² + 108q + 27
⇒ a³ = 64q³ + 576q² + 108q + 24 + 3
⇒ a³ = 4(16q³ + 144q² + 27q + 6) + 3
⇒ a³ = 4m + 3
where, m = (16q³ + 144q² + 27q + 6)
Hence Proved.