Math, asked by siddharthgarg2p85kf0, 1 year ago

show that cube of any positive integer is in the form of 4m, 4m+1,4m+2

Answers

Answered by Anonymous
21

\huge{\bold{\underline{Solution-:}}}

Let the positive integer be a then, according to Euclid's division lemma

a = bq + r

Here,

b = 4

r = 0,1,2 and 3

Now,

a = 4q

a = 4q + 1

a = 4q + 2

a = 4q + 3

\bold{\underline{In\ the\ 1st\ case\ we\ have\ a = 4q}}

 {a}^{3}  = (4q) {}^{3}  \\  \\  {a}^{3} = 64  {q}^{3} \\  \\  {a}^{3}  = 4(16 {q}^{3} ) \\  \\  {a}^{3}  = 4m

Where m = 16{q}^{3}

\bold{\underline{In\ the\ 2nd\ case\ we\ have\ a = 4q + 1}}

 {a}^{3}  =( 4q + 1 ) {}^{3}  \\  \\  {a}^{3}  = 64 {q}^{3}  + 48 {q}^{2}  + 12q + 1 \\  \\  {a}^{3}  = 4(16 {q}^{3}  + 12 {q}^{2}  + 4q) + 1 \\  \\  {a}^{3}  = 4m + 1

where m = 16{q}^{3} + 12{q}^{2} + 4q

\bold{\underline{In\ the\ 3rd\ case\ we\ have\ a = 4q + 2}}

 {a}^{2}  = (4q+ 2) {}^{3}  \\  \\  {a}^{3}  = 64 {q}^{3}  + 96 {q}^{2}  + 48q+ 8 \\  \\ a {}^{3}  = 4(16 {q}^{3}  + 24 {q}^{2}  + 12q + 2) \\  \\  {a}^{3}  = 4(16 {q}^{3}  + 24 {q}^{2}  + 12q) + 2 \\  \\  {a}^{3}  = 4m + 2

where m = 16{q}^{3} + 24{q}^{2} + 12q

So, now the cube of positive integer a is in the form of 4m, 4m + 1 and 4m + 2

\huge{\bold{\underline{Hence\ proved}}}

Answered by Mankuthemonkey01
22

Correct Question :-

Show that cube of any positive integer is in the form of 4m, 4m + 1, 4m + 3

Solution :-

We know that, a number is of the form of

a = bq + r, where a, b are positive integers and 0 ≤ r < b

Now, a number can be of the form of

a = 4q

a = 4q + 1

a = 4q + 2

or, a = 4q + 3

if, b is 4

So, for the first case :-

a = 4q

⇒ a³ = (4q)³

⇒ a³ = 64q³

⇒ a³ = 4(16q³)

⇒ a³ = 4m

where, m = 16q³

Second case :-

a = 4q + 1

⇒ a³ = (4q + 1)³

⇒ a³ = 64q³ + 48q² + 12q + 1

⇒ a³ = 4(16q³ + 12q² + 3q) + 1

⇒ a³ = 4m + 1

where, m = (16q³ + 12q² + 3q)

Third Case :-

a = 4q + 2

⇒ a³ = (4q + 2)³

⇒ a³ = 64q³ + 96q² + 48q + 8

⇒ a³ = 4(16q³ + 24q² + 12q + 2)

⇒ a³ = 4m

where, m = (16q³ + 24q² + 12q + 2)

Fourth Case :-

a = 4q + 3

⇒ a³ = (4q + 3)³

⇒ a³ = 64q³ + 576q² + 108q + 27

⇒ a³ = 64q³ + 576q² + 108q + 24 + 3

⇒ a³ = 4(16q³ + 144q² + 27q + 6) + 3

⇒ a³ = 4m + 3

where, m = (16q³ + 144q² + 27q + 6)

Hence Proved.

Similar questions