Math, asked by radhikamachu15, 8 months ago

Show that cube of any positive integer will be in the form of 8m or 8m + 1 or 8m + 3 or 8m + 5 or 8m + 7, where m is a whole number.​

Answers

Answered by Anonymous
63

Solution :-

a = bq + r, 0 < r < b

a = 8k + t for t = 0, 1, 2, 3, 4, 5, 6, 7.

a³ = (8k + t)³

= (8k)³ + 3(8k) (t) (8k + t) + (t)³

= 8[ 64k³ + 3kt(8k + t) ] + t³

= 8n + t³

If t = 0, 2, 4, 6 then t³ = 8p

a³ = (8k + t)³ = 8n + 8p = 8(n + p) = 8m

If t = 1 then a³ = 8n + 1 = 8m + 1

If t = 3 then a³ = 8n + 27

= 8(n + 3) + 3 = 8m + 3

If t= 5 then a³ = 8n + 125

= 8(n + 15) + 5 = 8m + 5

If t = 7 then a³ = 8n + 343

= 8(n + 42) + 7 = 8m + 7

.°. The cube of any positive integer will be of the form 8m or 8m + 1 or 8m + 3 or 8m + 5 or 8m + 7.

Answered by Anonymous
3

Answer:

Let a be a positive integer.

According to Euclid division lemma,

a = bq + r where 0 ≤ r < b.

Let b = 8 ,

then, a = 8q + r

r can be 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 .

Let's consider r = 0

them a = 8q

Cubing on both sides we get,

a³ = (8q)³

= 512q³

= 8(64q³)

= 8m where m = 64q³

===========================

If r = 1 ,

then a = 8q +1

a³ = (8q + 1)³

a³ = 512q³ + 1 + 3(8q)(8q+1)

= 512q³ + 1 + 24q(8q+1)

= 512q³ + 1 + 192q² + 24q

= 8( 64q³ + 24q² + 3q) + 1

= 8m + 1 where m = 64q³ + 24q² + 3q

===========================

If r = 2 ,

a = 8q + 2

a³ = (8q+2)³

= 512q³ + 8 + 48q(8q+2)

= 512q³ + 8 + 384q²+ 96q

= 512q³ + 384q²+ 96q + 8

= 8 ( 64q³ + 48q² + 12q + 1 )

= 8m

where m = 64q³ + 48q² + 12q+ 1

===========================

if r = 3

then a = 8q + 3

a = (8q+3)³

= 512q³+27+72q(8q+3)

= 8(64q³+ 3 + 72q²+ 27q ) + 3

= 8m+ 3

where m = 64q³ + 72q² + 27q+3)

=======================

If r = 4

a = 8q + 4

a³ = 512q³+ 64 + 768q² + 384q

a³ = 8( 64q³ + 8 + 96q² + 48q)

a³ = 8m

where m = 64q³ + 8 + 96q² + 48q

===========================

when r = 5

a = 8q + 5

a³ = (8q+5)³

= 512q³ + 960q² + 600q + 125

= 8 ( 64q³ + 120q² + 75q + 15) + 5

= 8m + 5

where m = 64q³ + 120q² + 75q + 15

===========================

if r = 6 .

then a = 8q + 6

a³ = ( 8q + 6)^3

= 512q³ + 1152q² + 864q + 216

= 8 ( 64q³ + 144q² + 108q + 27 )

= 8m

where m = 64q³ + 144q² + 108q + 27

===========================

if r = 7

a = 8q + 7

a³ = (8q + 7)³

= 512q³ + 343 + 1344q² + 1176 q

= 8( 64q³ + 168q² + 147q + 42) + 7

= 8m + 7

where m = 64q³ + 168q² + 147q + 42

===========================

Therefore, We proved that cube of a positive integer will be of the form 8m , 8m+ 1 , 8m+3 , 8m+5 , 8m+ 7 where m is a whole number.

Similar questions