Math, asked by skpatwa530, 1 year ago

Show that cube root of ax^2+by^2+cz^2 is equal to cube root of a + cube rootof b+ cube root of c if ax^3=by^3=cz^3 and xy+yz+zx=xzy

Answers

Answered by Swarup1998
9

We have to prove:

\sqrt[3]{ax^{2}+by^{2}+cz^{2}}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}

Solution:

Given,

\quad ax^{3}=by^{3}=cz^{3}

\to ax^{3}=by^{3}=cz^{3}=k\:(\neq 0) (say)

Then,

\quad\quad x=\big(\frac{k}{a}\big)^{1/3}

\quad\quad y=\big(\frac{k}{b}\big)^{1/3}

\quad\quad z=\big(\frac{k}{c}\big)^{1/3}

Substituting the above values in the given relation

\quad xy+yz+zx=xzy

\Rightarrow \frac{1}{z}+\frac{1}{x}+\frac{1}{y}=1, we get

\quad \frac{1}{\big(\frac{k}{c}\big)^{1/3}}+\frac{1}{\big(\frac{k}{b}\big)^{1/3}}+\frac{1}{\big(\frac{k}{a}\big)^{1/3}}=1

\Rightarrow \big(\frac{c}{k}\big)^{1/3}+\big(\frac{b}{k}\big)^{1/3}+\big(\frac{c}{k}\big)^{1/3}=1

\Rightarrow k^{1/3}=a^{1/3}+b^{1/3}+c^{1/3}

So, we have

\quad x=\frac{a^{1/3}+b^{1/3}+c^{1/3}}{a^{1/3}}

\Rightarrow x^{2}=\big(\frac{a^{1/3}+b^{1/3}+c^{1/3}}{a^{1/3}}\big)^{2}

\Rightarrow ax^{2}=a\big(\frac{a^{1/3}+b^{1/3}+c^{1/3}}{a^{1/3}}\big)^{2}

\Rightarrow ax^{2}=a^{1/3}(a^{1/3}+b^{1/3}+c^{1/3})^{2}

\quad y=\frac{a^{1/3}+b^{1/3}+c^{1/3}}{b^{1/3}}

\Rightarrow y^{2}=\big(\frac{a^{1/3}+b^{1/3}+c^{1/3}}{b^{1/3}}\big)^{2}

\Rightarrow by^{2}=b\big(\frac{a^{1/3}+b^{1/3}+c^{1/3}}{b^{1/3}}\big)^{2}

\Rightarrow by^{2}=b^{1/3}(a^{1/3}+b^{1/3}+c^{1/3})^{2}

\quad z=\frac{a^{1/3}+b^{1/3}+c^{1/3}}{c^{1/3}}

\Rightarrow z^{2}=\big(\frac{a^{1/3}+b^{1/3}+c^{1/3}}{c^{1/3}}\big)^{2}

\Rightarrow cz^{2}=c\big(\frac{a^{1/3}+b^{1/3}+c^{1/3}}{c^{1/3}}\big)^{2}

\Rightarrow cz^{2}=c^{1/3}(a^{1/3}+b^{1/3}+c^{1/3})^{2}

Now, ax^{2}+by^{2}+cz^{2}

=(a^{1/3}+b^{1/3}+c^{1/3})(a^{1/3}+b^{1/3}+c^{1/3})^{2}

=(a^{1/3}+b^{1/3}+c^{1/3})^{3}

\Rightarrow ax^{2}+by^{2}+cz^{2}=(a^{1/3}+b^{1/3}+c^{1/3})^{3}

Taking cube root to both sides, we get

\quad (ax^{2}+by^{2}+cz^{2})^{1/3}=[(a^{1/3}+b^{1/3}+c^{1/3})^{3}]^{1/3}

\Rightarrow (ax^{2}+by^{2}+cz^{2})^{1/3}=a^{1/3}+b^{1/3}+c^{1/3}

\Rightarrow \sqrt[3]{ax^{2}+by^{2}+cz^{2}}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}

Hence, proved.

Answered by neha77777780
1

Answer:

Mark me as Brainliest

Step-by-step explanation:

this is your answer

Attachments:
Similar questions