Show that d dz (z 2 z ∗ ) does not exist anywhere.
Answers
Answered by
6
Writing z = x + iy, we have
z^2 * z_bar
= (x + iy)^2 * (x - iy)
= ((x^2 - y^2) + 2ixy) * (x - iy)
= (x^3 + xy^2) + i(x^2 y + y^3).
Hence, u = x^3 + xy^2 and v = x^2 y + y^3.
Now, we check the Cauchy-Riemann equations.
u_x = v_y ==> 3x^2 + y^2 = x^2 + 3y^2 ==> x^2 = y^2
u_y = -v_x ==> 2xy = -2xy ==> xy = 0.
So these equations are satisfied precisely when x = y = 0.
==> z = x + iy = 0 + 0i = 0.
(Moreover, f '(0) = u_x (0, 0) + i v_x (0, 0) = 0.)
----
Double check (at z = 0):
f '(0) = lim(Δz→0) (f(0 + Δz) - f(0))/Δz
........= lim(Δz→0) [(Δz)^2 * (Δz)_bar) - 0]/Δz
........= lim(Δz→0) (Δz) * (Δz)_bar
........= 0.
z^2 * z_bar
= (x + iy)^2 * (x - iy)
= ((x^2 - y^2) + 2ixy) * (x - iy)
= (x^3 + xy^2) + i(x^2 y + y^3).
Hence, u = x^3 + xy^2 and v = x^2 y + y^3.
Now, we check the Cauchy-Riemann equations.
u_x = v_y ==> 3x^2 + y^2 = x^2 + 3y^2 ==> x^2 = y^2
u_y = -v_x ==> 2xy = -2xy ==> xy = 0.
So these equations are satisfied precisely when x = y = 0.
==> z = x + iy = 0 + 0i = 0.
(Moreover, f '(0) = u_x (0, 0) + i v_x (0, 0) = 0.)
----
Double check (at z = 0):
f '(0) = lim(Δz→0) (f(0 + Δz) - f(0))/Δz
........= lim(Δz→0) [(Δz)^2 * (Δz)_bar) - 0]/Δz
........= lim(Δz→0) (Δz) * (Δz)_bar
........= 0.
Similar questions