Physics, asked by anshit9419, 9 months ago

Show that E.F intensity at any point due to an electric dipole at distance r from the dipole is given by E=1/4pi efsilon P root[3 cos^2 thita =1]/r^3,where thita is the angle between the radius vector r and the direction of dipole moment p?

Answers

Answered by nirman95
8

To show:

Electric field intensity at any point due to a short electric dipole is

E =  \dfrac{1}{4\pi \epsilon_{0} }  \bigg \{ \dfrac{p \sqrt{3 { \cos}^{2}( \theta) + 1 } }{ {r}^{3} }  \bigg \}

Proof:

Let the point be located at a distance of "r" from the short dipole and at an angle of \theta.

Axial component at that point:

 \therefore \: E_{ax} =  \dfrac{2kp \cos( \theta) }{ {r}^{3} }

Equatorial component at that point:

 \therefore \: E_{eq} =  \dfrac{kp \sin( \theta) }{ {r}^{3} }

Net Electrostatic Field:

 \therefore \: E =  \sqrt{ {(E_{ax}) }^{2} +  {(E_{eq}) }^{2}  }

  =  >  \: E =  \sqrt{ {( \dfrac{2kp \cos( \theta) }{ {r}^{3} } ) }^{2} +  {( \dfrac{kp \sin( \theta) }{ {r}^{3} } ) }^{2}  }

  =  >  \: E =  \sqrt{( { \dfrac{kp}{ {r}^{3}})}^{2}   \{4 { \cos}^{2}( \theta)  +  { \sin}^{2}( \theta) \} }

  =  >  \: E = \dfrac{kp}{ {r}^{3} }   \sqrt{  \{4 { \cos}^{2}( \theta)  +  { \sin}^{2}( \theta) \} }

  =  >  \: E = \dfrac{kp}{ {r}^{3} }   \sqrt{  4 { \cos}^{2}( \theta)  + 1 -  { \cos}^{2}( \theta)  }

  =  >  \: E = \dfrac{kp}{ {r}^{3} }   \sqrt{  3 { \cos}^{2}( \theta)  + 1   }

[Hence proved]

Similar questions