Math, asked by Bhupeshdewangan8253, 1 year ago

Show that each of the given three vectors is a unit vector: \frac{1}{7}(2\hat i-3\hat j+6 \hat k),\frac{1}{7}(3\hat i-6\hat j+2 \hat k), \frac{1}{7}(6\hat i-2\hat j-3 \hat k)Also, show that they are mutually perpendicular to each other.

Answers

Answered by abhi178
3
we know, magnitude of unit vector equals 1.

here given three vectors

\vec{A}= \frac{1}{7}(2\hat i-3\hat j+6 \hat k)

\vec{B}=\frac{1}{7}(3\hat i+6\hat j+2 \hat k)

\vec{C}=\frac{1}{7}(6\hat i-2\hat j-3 \hat k)

Let \vec{A}=\frac{1}{7}(2\hat i-3\hat j+6 \hat k)=\frac{2}{7}\hat i-\frac{3}{7}\hat j+\frac{6}{7}\hat k

magnitude of \vec{A} = |\vec{A}|

= \sqrt{\left(\frac{2}{7}\right)^2+\left(\frac{-3}{7}\right)^2+\left(\frac{6}{7}\right)^2}

=\sqrt{\frac{4}{49}+\frac{9}{49}+\frac{36}{49}}=\sqrt{\frac{49}{49}}=1

similarly, you can find, |\vec{B}|=|\vec{C}|=1 ,by using above method.

now, we have to prove that they are mutually perpendicular to each other.

it is possible when \vec{A}.\vec{B}=0 and \vec{B}.\vec{C}=0

\vec{A}.\vec{B}=\frac{1}{7}(2\hat i-3\hat j+6 \hat k).\frac{1}{7}(3\hat i+6\hat j+2 \hat k)

= \frac{1}{49}\{2\times3+(-3)\times(6)+6\times2\}

= \frac{1}{49}\{6-18+12\}=0

and \vec{B}.\vec{C}=\frac{1}{7}(3\hat i+6\hat j+2 \hat k).\frac{1}{7}(6\hat i-2\hat j-3 \hat k)

= \frac{1}{49}\{3\times6+6\times-2+2\times-3\}

=\frac{1}{49}\{18-12-6\}=0

hence, \vec{A},\vec{B},\textbf{and},\vec{C} are mutually perpendicular.
Similar questions