Math, asked by MrAryabhatt, 3 months ago

Show that every homogeneous equation of degree two in x and y , i.e., ax² +2hxy + by² = 0 represents a pair of lines passing through origin if h²- ab ≥ 0.​

Answers

Answered by MrAnonymous412
25

 \\  \color{blue} \underline{ \large \rm \: Solution :-  } \\  \\

 \\  \\  \sf \:  \:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{a}{b}  {x}^{2}   \: +  \:  \frac{2hxy}{b}  \:  +   \:  {y}^{2}  \:  =  \: 0 \\  \\

 \\  \\  \sf \:  \:  \:  \:  \:  :  \implies  \:  \:  \: \therefore \:  {y}^{2}  \:  +  \:  \frac{2h}{b} xy \:  =  \:   - \frac{a}{b}  {x}^{2}  \\  \\

 \\  \sf \: On \: completing\: the \: square \: and \: adjusting , \: we \: get  \\  \\

 \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \longrightarrow \:  \:   {y}^{2}  \:  +  \:  \frac{2h}{b} xy \:  +  \:  \frac{ {h}^{2} {x}^{2}  }{ {b}^{2} }  \:  =  \:  \frac{ {h}^{2}  {x}^{2} }{ {b}^{2} }  \:  -  \:  \frac{a}{b}  {x}^{2} \\  \\

 \\   \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \:  :  \:  \implies \:  \:  \:  \bigg[ y \:  +  \:  \frac{h}{b}x \bigg ] ^{2}  \:  =  \:  \bigg[  \frac{ ({h }^{2}  \:  -  \: ab)}{ {b}^{2} } \bigg ]  \\  \\

 \\ \\ \:  \:  \:  \:  \therefore \:  \sf \:   \:  \ \:  \:  \:  :  \implies \: y \:  +  \:  \frac{h}{b} x \:  =  \:   + or -\:  \frac{ \sqrt{ {h}^{2}  - ab} }{b} x \\  \\

 \\  \\   \:  \:  \:  \:  \therefore \:  \sf \:   \:  \ \:  \:  \:  :  \implies \: y \:   =   \:   - \frac{h}{b} x  \:   + or - \:  \frac{ \sqrt{ {h}^{2}  - ab} }{b} x \\  \\

 \\  \\  \:  \:  \therefore \:   \:  \:  \:  \:  \: :  \implies \sf \: y \:  =  \:  \bigg( \frac{ - h  + or -  \sqrt{ {h}^{2}  - ab}  }{b}  \bigg)x \\  \\

 \\  \\  \sf \: \therefore \: \:\: equation \:  represent  \: the \:  two  \: lines  \\  \\

 \\  \\  \:  \:  \therefore \:   \:  \:  \:  \:  \:  \sf \: y \:  =  \:  \bigg( \frac{ - h  + \sqrt{ {h}^{2}  - ab}  }{b}  \bigg)x  \:  \:  \: or \:  \:  \:y \:  =  \:  \bigg( \frac{ - h   -  \sqrt{ {h}^{2}  - ab}  }{b}  \bigg)x\\  \\

 \\  \\  \sf \: The \: above \: equation\: are \: in \: the \: form \: of \: y  \:  = mx \:  \\  \\

These lines passing through the origin . thus the homogeneous equation (1) represent the pair of line through the origin, if h²-ab≥ 0.


REDPLANET: Nice Answer :)
MrAnonymous412: ;)
MrAryabhatt: Thank you !
MrAnonymous412: ✌️
Answered by soumyasingh77
3

Step-by-step explanation:

solution

Let two lines y=m

1

,x and y=m

2

x passess through origin.

⇒y−m

1

x=0 and y−m

2

x=0

⇒(y−m

1

x)(y−m

2

x)=0

∴y

2

−(m

1

+m

2

)xy+m

1

m

2

x

2

=0; Where m

1

and m

2

are slopes of lines.

∴y

2

−(sum of slopes)xy+(product of slopes)x

2

=0

It represents pair of straight lines passing through origin.

Now,

ax

2

+2hxy+by

2

=0

⇒y

2

+

b

2h

xy+

b

a

x

2

=0

⇒m

1

+m

2

=

b

−2h

and m

1

m

2

=

b

a

⇒A.M≥G.M

2

m

1

+m

2

m

1

m

2

⇒(m

1

+m

2

)

2

≥4m

1

m

2

b

2

4h

2

b

4a

⇒h

2

≥ab

∴h

2

−ab≥0

Here ur solution

Mark as brainleist please

Similar questions