Math, asked by munishsharma171286, 4 months ago

show that (exponents)​

Attachments:

Answers

Answered by SweetLily
56

{ \mathtt{\large{ \underline{Concept}}}}

✏️Here the concept of Laws of exponents is used.

✏️The bases are same with different exponent powers which are multiplied. So in this case the the powers get added.

It can be written as :-

\sf {\implies {x}^{y}\times  {x}^{m}= {x}^{y + m} } \\

✏️Any variable or constant raised to the power 0 is always 1.

example - a⁰= 1

{ \mathtt{\large{ \underline{Solution}}}}

L.H.S

\sf{ \sqrt{ {x}^{(p - q)} } \times  \sqrt{ {x}^{(q - r)}}  \times  \sqrt{ {x}^{(r - p)}}} \\  \\  \sf{ \implies \:  {x}^{ \frac{p - q}{2} }  \times  {x}^{ \frac{q - r}{2} }  \times  {x}^{ \frac{r - p}{2} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  [ \because√=\frac{1}{2}]} \\  \\  \sf{ \implies \:  {x}^{ \frac{p - q}{2} + \frac{q - r}{2} + \frac{r - p}{2}}} \\  \mathtt { \underline\color{lightblue}{add \: the \: powers}} \\ \\\sf{ \implies{x}^{ \frac{0}{2} } } \\  \\  \sf \implies\color{red}{1}

R.H.S

↝ 1

Hence proved that L.H.S = R.H.S =1

_______________________

Refer to the attachment for more rules of exponent!!

Attachments:
Answered by Anonymous
14

 {\mathtt{\large{\underline {Concept}}}}

✏️Here the concept of Laws of exponents is used.

✏️The bases are same with different exponent powers which are multiplied. So in this case the the powers get added

It can be written as :-

 \begin{gathered}\sf {\implies {x}^{y}\times {x}^{m}= {x}^{y + m} } \\ \end{gathered}

✏️Any variable or constant raised to the power 0 is always 1.

example - a⁰= 1

 {\mathtt{\large{\underline {Solution}}}}

L.H.S

 \begin{gathered}\sf{ \sqrt{ {x}^{(p - q)} } \times \sqrt{ {x}^{(q - r)}} \times \sqrt{ {x}^{(r - p)}}} \\ \\ \sf{ \implies \: {x}^{ \frac{p - q}{2} } \times {x}^{ \frac{q - r}{2} } \times {x}^{ \frac{r - p}{2} } \: \: \: \: \: \: \: \: \: \: \: \: \: [ \because√=\frac{1}{2}]} \\ \\ \sf{ \implies \: {x}^{ \frac{p - q}{2} + \frac{q - r}{2} + \frac{r - p}{2}}} \\ \mathtt { \underline\color{purple}{add \: the \: powers}} \\ \\\sf{ \implies{x}^{ \frac{0}{2} } } \\ \\ \sf \implies\color{red} {1}\end{gathered}

R.H.S

↝ 1

Hence proved that L.H.S = R.H.S =1

Similar questions