Math, asked by TheBrainliestUser, 3 months ago

Show that f : N → N, given by

f(x) = \begin{cases} \text{x + 1, if  x  is  odd, \  \textless \ br /\  \textgreater \ }\\  \\ \text{x - 1, if  x  is  even}\\  \end{cases}
is both one-one and onto. ​

Answers

Answered by sadanandasahoo003
11

cheack the pic upper sode

Attachments:
Answered by Limafahar
20

For one-one :

IF \: f(a) = f(b)

⇒a+1=b+1 or a−1=b−1

if \:  both  \: are  \: even  \: or  \: odd.

\large\boxed{\textsf{\textbf{\blue{Note \::-}}}}

  • f(a),f(b) are not equal if one is even and other is odd, since if a is even and b is odd, a−1 is odd and b+1 is even.

⇒a=b.

So, one-one  \: function \\ Now, for  \: onto:

For  \: all  \: x \: ∈ \:  odd  \: nos \:  f(x)  \: gives \:  all \:  the \:  even \:  nos. 

And  \: all  \: x \: ∈ \:  even \:  nos \: f(x)  \: gives  \: all  \: the \:  odd  \: nos

⇒range=codomain

So \: , onto \:  function

Similar questions