Math, asked by debesh454, 2 months ago

show that f(x) =|x-1| is countinous at x=1​

Answers

Answered by mathdude500
1

Given Question :-

  • Show that f(x) =|x-1| is countinous at x=1

ANSWER

Let us first define a function,

  • f(x) =|x-1|

\begin{gathered}\begin{gathered}\bf \:  |x - 1| =  \begin{cases} &\sf{ - (x - 1) \:  \: if \: x  \: <  \: 1} \\ &\sf{x - 1 \:  \: if \: x \:  \geqslant  \: 1} \end{cases}\end{gathered}\end{gathered}

:\implies\:\begin{gathered}\begin{gathered}\bf \:  |x - 1| =  \begin{cases} &\sf{ 1 - x \:  \: if \: x  \: <  \: 1} \\ &\sf{x - 1 \:  \: if \: x \:  \geqslant  \: 1} \end{cases}\end{gathered}\end{gathered}

Now,

  • we have to check the continuity of the f(x) at x = 1.

Now,

 \longmapsto \rm \: f(1) \:  =  \: 1 - 1

\rm :\implies\:f(1) \:  =  \: 0 -  - (1)

Now,

  • Consider LHL,

 \longmapsto \rm \:  \tt \:\lim_{x\to1 ^{ - } } \: f(x)

 \longmapsto \rm \:  \tt \:\lim_{x\to1 ^{ - } }(1 - x)

 \pink{ \tt \: Put  \: x = 1 - h, as \: x \to \: 1 \: so \: h \to \: 0}

 \longmapsto \rm \:  \tt \:\lim_{h\to0}(1 - 1 + h)

 \longmapsto \rm \:  \tt \:\lim_{h\to0}(h)

 \longmapsto \rm \: 0 -  - (2)

Now,

  • Consider RHL,

 \longmapsto \rm \:  \tt \:\lim_{x\to1 ^{  +  } } \: f(x)

 \longmapsto \rm \:  \tt \:\lim_{x\to1 ^{  +  } } \: (x - 1)

 \pink{ \tt \: Put  \: x = 1  +  h, as \: x \to \: 1 \: so \: h \to \: 0}

 \longmapsto \rm \:  \tt \:\lim_{h\to0}(1  + h - 1)

 \longmapsto \rm \:  \tt \:\lim_{h\to0}(h)

 \longmapsto \rm \: 0 -  - (3)

So,

From (1), (2) and (3), we concluded that

 \longmapsto \rm \:  \tt \:\lim_{x\to1 ^{ - } } = \:\lim_{x\to1 ^{ - } }  \:  =  \: f(1)

 \boxed{ \implies \green{ \bf \:Hence,  \: f(x) \:  = \: |x-1|  \: is \:  countinous  \: at  \: x \: = \: 1 }}

Similar questions