Math, asked by khatridivya017, 10 months ago

show that f(x) = (x^3)+(3x)-(1)=0, has a root between (0,1)​

Answers

Answered by shadowsabers03
4

Here,

\longrightarrow\sf{f(x)=x^3+3x-1}

Its derivative with respect to \sf{x} is,

\longrightarrow\sf{f'(x)=3x^2+3}

We see this derivative is always positive for every \sf{x\in\mathbb{R}.} Hence \sf{f(x)} is a strictly increasing function.

\longrightarrow\sf{x^2\in[0,\ \infty)}

\longrightarrow\sf{3x^2\in[0,\ \infty)}

\longrightarrow\sf{3x^2+3\in[3,\ \infty)}

\Longrightarrow\sf{f(x)\ \textgreater\ 0}

For \sf{x=0,}

\longrightarrow\sf{f(0)=(0)^3+3(0)-1}

\longrightarrow\sf{f(0)=-1}

For \sf{x=1,}

\longrightarrow\sf{f(1)=(1)^3+3(1)-1}

\longrightarrow\sf{f(1)=3}

That is, since \sf{f(x)} is strictly increasing,

\longrightarrow\sf{x\in[0,\ 1]\quad\implies\quad f(x)\in[-1,\ 3]}

This implies \sf{f(x)} intersects x axis at a point \sf{(x,\ 0)} where \sf{x\in(0,\ 1)} because \sf{0\in[-1,\ 3].}

Therefore, \sf{f(x)=x^3+3x-1=0} has a root in the interval \sf{(0,\ 1).}

Similar questions