Math, asked by mani2786, 8 months ago

show that : follow the image.
Pls help ​

Attachments:

Answers

Answered by karannnn43
2

 \sqrt{ {x}^{p - q} } \times   \sqrt{ {x}^{q - r} } \times  \sqrt{ {x}^{r - p} } \\  \\  =  \frac{ \sqrt{ {x}^{p} } }{ \sqrt{ {x}^{q} } }  \times  \frac{ \sqrt{ {x}^{q} } }{ \sqrt{ {x}^{r} } }  \times  \frac{ \sqrt{ {x}^{r} } }{ \sqrt{ {x}^{p} } }  \\  \\  = 1 \times 1 \times 1 \\  \\  = 1

Answered by InfiniteSoul
0

{\huge{\bold{\purple{\bigstar{\boxed{\boxed{\bf{Question}}}}}}}}

\longrightarrow \sf proof :- \sqrt{x^{p-q}} \times \sqrt{x^{q-r}}\times\sqrt{x^{r-p}} = 1

{\huge{\bold{\purple{\bigstar{\boxed{\boxed{\bf{Answer}}}}}}}}

LHS:-

\longrightarrow \sf \sqrt{x^{p-q}} \times \sqrt{x^{q-r}}\times\sqrt{x{r-p}}

{\bold{\blue{\boxed{\bf{x^a-b = \dfrac{x^a}{x^b}}}}}}

\longrightarrow\sf \sqrt{\dfrac{x^p}{x^q}}\times\sqrt{\dfrac{x^q}{x^r}}\times\sqrt{\dfrac{x^r}{x^p}}

{\bold{\blue{\boxed{\bf{x^a\times x^b = x^{a+b}}}}}}

\longrightarrow\sf\sqrt\dfrac{x^{p+q+r}}{x^{p+q+r}}

\longrightarrow\sf\sqrt{x^{\cancel p+\cancel q+\cancel r-\cancel p-\cancel q\cancel -r}}

\longrightarrow\sf\sqrt{x^0}

{\bold{\blue{\boxed{\bf{x^0 = 1}}}}}

\longrightarrow\sf\sqrt{1}

\longrightarrow\sf\sqrt{1\times1}

\longrightarrow\sf\ 1

{\bold{\blue{\boxed{\bf{\dag 1}}}}}

RHS:-

{\bold{\blue{\boxed{\bf{\dag 1}}}}}

COMPARE :-

{\bold{\blue{\boxed{\bf{\dag 1 = 1 }}}}}

{\bold{\blue{\boxed{\bf{\dag LHS = RHS}}}}}

{\bold{\blue{\boxed{\bf{\dag Hence\:proved}}}}}

______________________❤

THANK YOU❤

Similar questions