Show that for a uniformly accelerated motion starting from velocity u and acquiring velocity v has average velocity equal to arithmetic mean of the initial (u) and final velocity (v).
Answers
Answer:
(V + U)/2
Explanation:
Initial Velocity = U
Final Velocity = V
Uniform acceleration = a
Time Taken = (V - U)/a
Distance Covered S = ut + (1/2)at²
S = U(V - U)/a + (1/2)a((V - U)/a)²
=>S = ((V - U)/a )(U + (V- U)/2)
=> S = ((V - U)/a )(V + U)/2
Average Velocity = S /T
=> Average Velocity = ((V - U)/a )((V + U)/2) / ((V - U)/a)
= (V + U)/2
arithmetic mean of the initial (u) and final velocity (v). = (U + V)/2
(V + U)/2 = (U + V)/2
Hence Proved
Solution:
Initial Velocity = U
Final Velocity = V
Uniform acceleration = a
Time Taken = (V - U)/a
Distance Covered S = ut + (1/2)at²
S = U(V - U)/a + (1/2)a((V - U)/a)²
=S = ((V - U)/a )(U + (V- U)/2)
= S = ((V - U)/a )(V + U)/2
Average Velocity = S /T
= Average Velocity = ((V - U)/a )((V + U)/2) / ((V - U)/a)
= (V + U)/2
arithmetic mean of the initial (u) and final velocity (v). = (U + V)/2
(V + U)/2 = (U + V)/2
Hence it is proved!!✔✔