Show that for any sets A and B , A = (A U B) intersection (A-B)
Answers
Answered by
2
Hi there!
Let A= {a,b,c} n' B = {a,b,d}
♦ L.H.S = A-B = {c} n' B-A = {d}
Thus,
(A-B) U (B-A) = {c,d}
♦ R.H.S = A U B= {a,b,c,d}
A ∩ B = {c,d}
Thus,
(A U B) - (A ∩ B) = {c,d}
L.H.S = R.H.S. -[ Hence Proved. ]
Hope it helps! :)
Let A= {a,b,c} n' B = {a,b,d}
♦ L.H.S = A-B = {c} n' B-A = {d}
Thus,
(A-B) U (B-A) = {c,d}
♦ R.H.S = A U B= {a,b,c,d}
A ∩ B = {c,d}
Thus,
(A U B) - (A ∩ B) = {c,d}
L.H.S = R.H.S. -[ Hence Proved. ]
Hope it helps! :)
Similar questions