Math, asked by Rakshitha74161, 1 year ago

Show that four points (0,-1),(6,7),(-2,3) & (8,3) are vertices of a rectangle

Answers

Answered by MsPRENCY
3

<b> Answer: Refer the attachment

✌✌

Be Brainly!!!

Attachments:
Answered by Anonymous
15

AnswEr:

Let A(0,-1) , B(6,7) , C(-2,3) and D(8,3) be the given points. Then,

  \bf \: AD = \sf \sqrt{(8 - 0) {}^{2} +  {(3 + 1)}^{2}  }  \\  \\  \sf =  \sqrt{64 + 16}  =  \sf4 \sqrt{5}  \\  \\  \bf \: BC =\sf  \sqrt{( {6 +2 )}^{2} +  {(7 - 3)}^{2}  }  \\  \\  \bf =  \sf\sqrt{64 + 16}  =  \sf4 \sqrt{5}  \\  \\  \bf \: AC = \sf \sqrt{ {( - 2 - 0)}^{2}  +  {(3 + 1)}^{2} }  \\  \\  \sf =  \sqrt{4 + 16}  =  \sf2 \sqrt{5}  \qquad \:  \:  \: and, \\  \\  \bf \: BD =  \sf\sqrt{ {(8 - 6)}^{2}  +  {(3 - 7)}^{2} }  \\  \\  \sf =  \sqrt{4 + 16}  = \sf 2 \sqrt{5}

\therefore \sf\underline{AD=BC\:and\:AC=BD}

So, ADBC is a parallelogram.

\huge\underline\bold{Now,}

 \sf \: AB =  \sqrt{ {(6 - 0)}^{2} +  {(7 + 1)}^{2}  }  \\  =  \sf \sqrt{36 + 64}  = 10 \\  \\  \rm \: and \:  \\  \\  \sf \: CD =  \sqrt{ {(8 + 2)}^{2}  +  {(3 - 3)}^{2} }  \\  \sf = 10

Clearly , AB² = AD² + DB² and CD² = CB² + BD². Hence, ADBC is a rectangle.

Attachments:
Similar questions