Math, asked by Anonymous, 1 year ago

Show that given function doesn't exist
 \sf{ \lim x \rightarrow \: 0} \:   \:  \displaystyle{\sf{ \frac{ {e}^{ \frac{1}{x} } - 1 }{ {e}^{ \frac{1}{x} } + 1 } }} \\

Answers

Answered by Anonymous
427

\LARGE{\underline{\underline{\red{\sf{Answer :}}}}}

We are given,

\large \displaystyle{\boxed {\sf{ \displaystyle \lim_ {x \to 0} \: \frac{ e^{\frac{1}{x}} \: - \: 1}{e^{\frac{1}{x}} \: + \: 1}}}}

---------------------------------------

Take L.H.L (Left Hand Limit)

As we know for left hand side,

⇒ x = 0 - h

\Large {\sf{x \: \to \: 0^{-} \: \: , \: \: h \: \to \: 0}}

Now Substute these values,

\Large \displaystyle {\sf{\lim_ {h \to 0} \: \frac{e^{\frac{-1}{h}} \: - \: 1}{e^{\frac{-1}{h}} \: + \: 1}}}

Which is also equal to,

 \displaystyle \sf{ \lim_ {x \to 0}} \:  \:  \frac{ {e}^{ \frac{1}{h} }  \:  -  \: 1}{ {e}^{ \frac{1}{h} } \:  +  \: 1 }

{\displaystyle {\sf {(1) \: \begin{cases}h \to 0 \\    \frac{1}{h}  \to  \infty \\  {e}^{ \frac{1}{h} }  \to  \infty \\  \frac{1}{ {e}^{ \frac{1}{h} }  } \to0 \end{cases}}}}

By using these values we get,

\Large{\sf{L.H.L \: = \: \frac{0 \: - \: 1}{0 \: + \: 1}}}

Thus L.H.L is,

\Large \implies {\underline{\boxed{\sf{L.H.L \: = \: -1}}}}

\rule{200}{2}

\rule{200}{2}

Now Take R.H.L (Right Hand Limit)

See Attached Figure for R.H.L

______________________

Now,

This Function is Wrong Because,

L.H.L ≠ R.H.L

✌ ✌ ✌ ✌

Attachments:

hukam0685: its ok
hukam0685: correcr
BrainlyConqueror0901: Nice explained : )
Anonymous: Awesome
Answered by sk181231
0

Answer:

Refer to the attachment

Attachments:
Similar questions