Math, asked by aryansingh1578, 3 months ago

Show that: (i) (3x + 7)2 – 84x = (3x – 7)2 (ii) (9p – 5q)2 + 180pq = (9p + 5q)2​

Answers

Answered by amarjeetkumarandal
1

Answer:

(i)(3x+7)2-84x=(3x-7)2

=(10x)2-84x

=82x=(3x- 7)2

=(4x)2.

(ii)(9p-5q) +180pq=(9p+5q)2

=(4p)2+180q

=(184pq)2(9p+5q)2

=(184pq)2+(14pq)2

=198pq2.

Answered by dasj19126
2

Step-by-step explanation:

i) \:  {(3x + 7)}^{2}  - 84x = \:  {(3x - 7)}^{2} \\ l.h.s =.|  {(3x + 7)}^{2} - 84x \\  = 9 {x}^{2}   + 42x + 49 - 84x \\  = 9 {x}^{2}  - 42x + 49 \\  =  {(3x)}^{2}  - (2 \times 3x \times 7) +  {7}^{2}  \\  =  {(3x - 7)}^{2}  \\.  )proved(. \\  \\ ii) \:  {(9p + 5q)}^{2}  - 180pq =  {(9p - 5q)}^{2}  \\ l.h.s = .|  {(9p + 5q)}^{2}  - 180pq \\  = 81 {p}^{2}  + 90pq + 25 {q}^{2}  - 180pq \\  = 81 {p}^{2}  - 90pq + 25 {q}^{2}  \\  =  {(9p)}^{2}  - (2 \times 9p \times 5q) +  {(5q)}^{2}  \\  =  {(9p - 5q)}^{2}  \\ ).proved.(

Similar questions