show that i + i^2 + i^3 + i^4 = 0
Answers
Answered by
0
Heya user,
i = √-1
=> i² = -1
=> i³ = -√-1 = -i
=> i⁴ = 1
And hence,
i + i² + i³ + i⁴ = i - 1 - i + 1 = ( i - i ) + ( 1 - 1 ) = 0;
i = √-1
=> i² = -1
=> i³ = -√-1 = -i
=> i⁴ = 1
And hence,
i + i² + i³ + i⁴ = i - 1 - i + 1 = ( i - i ) + ( 1 - 1 ) = 0;
Similar questions