Show that i+i30+i49+i61 is an imaginary number
Answers
Answered by
0
Answer:
z=-1+3i
Step-by-step explanation:
Rectangular form:
z = -1+3i
Angle notation (phasor):
z = 3.1622777 ∠ 108°26'6″
Polar form:
z = 3.1622777 × (cos 108°26'6″ + i sin 108°26'6″)
Exponential form:
z = 3.1622777 × ei 1.8925469 = 3.1622777 × ei 0.6024164 π
Polar coordinates:
r = |z| = 3.1622777 ... magnitude (modulus, absolute value)
θ = arg z = 1.8925469 rad = 108.43495° = 108°26'6″ = 0.6024164π rad ... angle (argument or phase)
Cartesian coordinates:
Cartesian form of imaginary number: z = -1+3i
Real part: x = Re z = -1
Imaginary part: y = Im z = 3
Similar questions