Math, asked by krithikaprabhu6686, 4 months ago

Show that I-tan²A by 1+ tan square A=
2 Cos² A-1​

Answers

Answered by EthicalElite
9

To Prove :

 \sf \dfrac{1-tan^{2}A}{1+tan^{2}A} = 2cos^{2}A - 1

____________________________

⠀ ⠀ ⠀⠀ ⠀

Proof :

LHS :  \sf \dfrac{1-tan^{2}A}{1+tan^{2}A}

⠀ ⠀ ⠀⠀ ⠀

We know that :

 \Large \underline{\boxed{\bf{tan = \dfrac{sin}{cos}}}}

 \sf : \implies \dfrac{1- \dfrac{sin^{2}A}{cos^{2}A}}{1+ \dfrac{sin^{2}A}{cos^{2}A}}

 \sf : \implies \dfrac{\dfrac{cos^{2}A - sin^{2}A}{cos^{2}A}}{\dfrac{cos^{2}A + sin^{2}A}{cos^{2}A}}

 \sf : \implies \dfrac{cos^{2}A - sin^{2}A}{\cancel{cos^{2}A}} \times \dfrac{\cancel{cos^{2}A}}{cos^{2}A + sin^{2}A}

 \sf : \implies \dfrac{cos^{2}A - sin^{2}A}{cos^{2}A + sin^{2}A}

⠀ ⠀ ⠀⠀ ⠀

Now, we know that :

 \Large \underline{\boxed{\bf{cos^{2}A + sin^{2}A = 1}}}

 \sf : \implies \dfrac{cos^{2}A - sin^{2}A}{1}

 \sf : \implies cos^{2}A - sin^{2}A

⠀ ⠀ ⠀⠀ ⠀

Now, we know that :

 \Large \underline{\boxed{\bf{ sin^{2}A = 1 - cos^{2}A}}}

 \sf : \implies cos^{2}A - (1 - cos^{2}A)

 \sf : \implies cos^{2}A - 1 + cos^{2}A

 \sf : \implies 2 cos^{2}A - 1

⠀ ⠀⠀ ⠀ ⠀⠀ ⠀

RHS :  \sf 2cos^{2}A - 1

As, LHS = RHS

Hence, Proved.

Answered by Anonymous
26

To Prove :

 \bull \:  \sf \dfrac{1 - tan {}^{2}A }{1 + tan {}^{2}A } = 2cos {}^{2} A - 1

Proof :

LHS

\longrightarrow \:  \sf \dfrac{1 - tan {}^{2}A }{1 + tan {}^{2}A } \: \red\bigstar

ㅤㅤㅤㅤㅤ

 \longrightarrow \:  \sf  \dfrac{ 1  -  \dfrac{sin {}^{2}A }{cos {}^{2} A}}{ 1 +\dfrac{sin {}^{2}A }{cos {}^{2} A} }

ㅤㅤㅤㅤㅤ

\longrightarrow \:  \sf   \dfrac{ \dfrac{cos {}^{2}A - sin {}^{2}A }{cos {}^{2}A } }{ \dfrac{sin {}^{2} A  + cos {}^{2}A }{cos {}^{2} A}  }

ㅤㅤㅤㅤㅤ

\longrightarrow \:  \sf   \dfrac{ \dfrac{cos {}^{2}A - sin {}^{2}A }{ \cancel{cos {}^{2}A }} }{ \dfrac{sin {}^{2} A  + cos {}^{2}A }{ \cancel{cos{}^{2} A}}  }

ㅤㅤㅤㅤㅤ

\longrightarrow \:  \sf   \dfrac{cos {}^{2}A - sin {}^{2}A} {sin {}^{2} A  + cos {}^{2}A  }

ㅤㅤㅤㅤㅤ

 \longrightarrow \:  \sf   \dfrac{cos {}^{2}A - (1 - cos {}^{2}A  )}{1}

ㅤㅤㅤㅤㅤ

\longrightarrow \:  \sf  2cos {}^{2} A - 1 \:  \green \bigstar

RHS

  • Hence Proved!!
Similar questions