Show that identities are equal in a group homomorphism
Answers
Answer:
Step-by-step explanation:
Theorem
Let \left({G, \circ}\right) and \left({H, *}\right) be groups.
Let \phi: \left({G, \circ}\right) \to \left({H, *}\right) be a group homomorphism.
Let:
e_G be the identity of G
e_H be the identity of H.
Then:
\phi \left({e_G}\right) = e_H
Proof 1
\displaystyle \map \phi {e_G} = \displaystyle \map \phi {e_G \circ e_G} \quad Definition of Identity Element \quad
\displaystyle = \displaystyle \map \phi {e_G} * \map \phi {e_G} \quad Definition of Morphism Property \quad
That is:
\displaystyle \map \phi {e_G} * e_H = \displaystyle \map \phi {e_G} * \map \phi {e_G} \quad Definition of Identity Element \quad
\displaystyle \leadsto \ \ \displaystyle e_H = \displaystyle \map \phi {e_G} \quad Cancellation Laws \quad
\blacksquare
Proof 2
A direct application of Homomorphism to Group Preserves Identity.
\blacksquare
Proof 3
From Group Homomorphism of Product with Inverse, we have:
\forall x, y \in G: \phi \left({x \circ y^{-1}}\right) = \phi \left({x}\right) * \left({\phi \left({y}\right)}\right)^{-1}
Putting x = y we have:
\displaystyle \phi \left({e_G}\right) = \displaystyle \phi \left({x \circ x^{-1} }\right) \quad \quad
\displaystyle = \displaystyle \phi \left({x}\right) * \left({\phi \left({x}\right)}\right)^{-1} \quad \quad
\displaystyle = \displaystyle e_H \quad \quad
\blacksquare