show that If 2(a²+b²)=(a+b)²then a=b
Atreyee26:
2(a^2+b^2)=(a+b)^2 or,(a+b)^2+(a-b)^2=(a+b)^2 or,(a-b)^2=0 or,(a-b)=0 or,a=b
Answers
Answered by
3
2 a^2 + 2 b^2 = a^2 + b^2 +2ab
=> a^2 +b^2 - 2ab =0
=> (a-b)^2 = 0
=> a-b=0
=> a=b
=> a^2 +b^2 - 2ab =0
=> (a-b)^2 = 0
=> a-b=0
=> a=b
Answered by
15
Given,
2(a²+b²) = (a+b)²
2a²+2b² = a²+b²+2ab
2a²-a²+2b²-b²-2ab = 0
a²+ b² - 2ab = 0
( a - b) ² = 0
a - b = 0
a = b.
Hence proved!
2(a²+b²) = (a+b)²
2a²+2b² = a²+b²+2ab
2a²-a²+2b²-b²-2ab = 0
a²+ b² - 2ab = 0
( a - b) ² = 0
a - b = 0
a = b.
Hence proved!
Similar questions
Geography,
8 months ago
Computer Science,
8 months ago
English,
8 months ago
Math,
1 year ago
History,
1 year ago