Math, asked by hasininagirimadugu, 2 months ago

show that if a circle touches all the four sides of a quadrilateral ABCD at points P,Q,R,S then AB+CD=BC+DA. ​

Answers

Answered by dmongp0712
0

Step-by-step explanation:

The figure shows that the tangents drawn from the exterior point to a circle are equal in length.

As DR and DS are tangents from exterior point D so, DR = DS---- (1)

As AP and AS are tangents from exterior point A so, AP = AS---- (2)

As BP and BQ are tangents from exterior point B so, BP = BQ---- (3)

As CR and CQ are tangents from exterior point C so, CR = CQ---- (4)

Adding the equation 1,2,3 & 4, we get

DR+AP+BP+CR=DS+AS+BQ+CQ

(DR+CR)+(AP+BP)=(DS+AS)+(BQ+CQ)

CD+AB=DA+BC

AB+CD=BC+DA

Hence proved.

Answered by sonuharshkapoor
1

Answer:

HEY MATE

HERE U GO

The figure shows that the tangents drawn from the exterior point to a circle are equal in length.

As DR and DS are tangents from exterior point D so, DR = DS---- (1)

As AP and AS are tangents from exterior point A so, AP = AS---- (2)

As BP and BQ are tangents from exterior point B so, BP = BQ---- (3)

As CR and CQ are tangents from exterior point C so, CR = CQ---- (4)

Adding the equation 1,2,3 & 4, we get

DR+AP+BP+CR=DS+AS+BQ+CQ

(DR+CR)+(AP+BP)=(DS+AS)+(BQ+CQ)

CD+AB=DA+BC

AB+CD=BC+DA

PLS MARK ME BRAINLIEST

Attachments:
Similar questions