Math, asked by prem55rana, 1 day ago

Show that if AUB = A and AnB = A, then A= B.​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given that,

\rm \: A\cup  B = A -  -  - (1) \\

and

\rm \: A\cap  B = A -  -  - (2) \\

So, from equation (1) and (2), we concluded that

\rm \: A\cup  B = A\cap  B \\

Now, Let assume that

\rm \: x \:  \in \: A

\rm\implies \: x \:  \in \: A\cup  B

\rm\implies \: x \:  \in \: A\cap  B

\rm\implies \: x \:  \in \:  B

\rm\implies \:A \:  \sub \: B -  -  - (3) \\

Now, Consider

\rm \: y \:  \in \: B

\rm\implies \: y \:  \in \: A\cup  B

\rm\implies \: y \:  \in \: A\cap  B

\rm\implies \: y \:  \in \: A

\rm\implies \:B \:  \sub \: A -  -  - (4) \\

From equation (3) and (4) , we concluded that

\rm\implies \:A \:  =  \: B \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

1. Commutative Law

\rm \: A\cup  B = B\cup  A

\rm \: A\cap  B = B\cap  A

2. Associative Law

\rm \: (A\cup  B)\cup  C = A\cup  (B\cup  C) \:  \\

\rm \: (A\cap  B)\cap  C = A\cap  (B\cap  C) \:  \\

3. Distributive Law

\rm \: A\cup  (B\cap  C) = (A\cup  B)\cap  (A\cup  B)

\rm \: A\cap  (B\cup  C) = (A\cap  B)\cup  (A\cap  B)

4. De Morgan's Law

\rm \: (A\cup  B)' = A'\cap  B' \\

\rm \: (A\cap  B)' = A'\cup  B' \\

Similar questions