Math, asked by Shreyanshijaiswal81, 19 days ago

Show that if the diagnals of a quardrilateral bisect each other at right angles, then it is a rhombus.
 \:  \:  \:  \:

Answers

Answered by misscuteepiexd
1

Answer:

annyeonghaseyo unnie

Let ABCD be a quadrilateral, whose diagonals AC and BD bisect each other at the right angle. So, we have, OA = OC, OB = OD, and ∠AOB = ∠BOC = ∠COD = ∠AOD = 90°. To prove ABCD a rhombus, we have to prove ABCD is a parallelogram and all the sides of ABCD are equal.

might help you

thanksuuuuuuuu for the question

Answered by Anonymous
28

Given :

  • i) AO = OC
  • ii) OB = OD
  • iii) ∠AOB = ∠BOC = ∠COD = ∠DOA = 90°

 \\ {\rule{200pt}{3pt}}

To Prove :

  • i) ABCD is a Rhombus .

 \\ {\rule{200pt}{3pt}}

Proof :

In AOB and BOC :

 \\

 {\longmapsto{\qquad{ \: \: {\sf{ AO = CO }}}}}{\: \: \: \: \: \: \: \: \: \:  { \lgroup {\red{\sf{Given}}}} \rgroup }

 {\longmapsto{\qquad{ \: \: {\sf{ OB = OB }}}}}{\: \: \: \: \: \: \: \: \: \: \: { \lgroup {\red{\sf{Common}}}} \rgroup }

 {\longmapsto{\qquad{ \: \: {\sf{ ∠AOB = ∠BOC }}}}}{\: \: \: { \lgroup {\red{\sf{Each \: 90°}}}} \rgroup  } \\

Hence,

∆AOB ≈ ∆BOC by SAS Congruence criteria .

So,

 \large{\underline{\boxed{\sf{ AB = BC }}}} \: \: \: \: { \lgroup {\orange{\sf{CPCT}}} \rgroup } --- {\purple{\sf{ (i) }}}

 \\ \qquad{\rule{150pt}{1pt}}

Similarly ,

COD ≈ ∆AOD

So,

 \large{\underline{\boxed{\sf{ CD = AD }}}} \: \: \: \: { \lgroup {\orange{\sf{CPCT}}} \rgroup } --- {\purple{\sf{ (ii) }}}

 \\ \qquad{\rule{150pt}{1pt}}

Similarly ,

BOC ≈ ∆COD

So,

 \large{\underline{\boxed{\sf{ BC = CD }}}} \: \: \: \: { \lgroup {\orange{\sf{CPCT}}} \rgroup } --- {\purple{\sf{ (iii) }}}

 \\ \qquad{\rule{150pt}{1pt}}

Now ,

From (i) ,(ii) and (iii) :

 {\dashrightarrow{\sf{ AB = BC = CD = AD }}}{\qquad{\: \: {\lgroup {\orange{\sf{From \: (i) \;,\:(ii) \: and \: (iii) }}} \rgroup }}}

Proved .

 \\ \qquad{\rule{150pt}{1pt}}

Hence ,

ABCD is a Rhombus .

 \\ {\blue{\underline{\rule{75pt}{9pt}}}}{\color{maroon}{\underline{\rule{75pt}{9pt}}}}{\color{cyan}{\underline{\rule{75pt}{9pt}}}}

Attachments:
Similar questions