Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.
Answers
Given:-
- The diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.
Explanation:-
Let ABCD be a quadrilateral and its diagonals AC and BD bisect each other at right angle at O.
To prove that,
The Quadrilateral ABCD is a square.
Proof,
In ΔAOB and ΔCOD,
AO = CO (Diagonals bisect each other)
∠AOB = ∠COD (Vertically opposite)
OB = OD (Diagonals bisect each other)
ΔAOB ≅ ΔCOD [SAS congruency]
Thus,
AB = CD [CPCT] — (i)
also,
∠OAB = ∠OCD (Alternate interior angles)
⇒ AB || CD
Now,
In ΔAOD and ΔCOD,
AO = CO (Diagonals bisect each other)
∠AOD = ∠COD (Vertically opposite)
OD = OD (Common)
ΔAOD ≅ ΔCOD [SAS congruency]
Thus,
AD = CD [CPCT] — (ii)
also,
AD = BC and AD = CD
⇒ AD = BC = CD = AB — (ii)
also, ∠ADC = ∠BCD [CPCT]
and ∠ADC + ∠BCD = 180° (co-interior angles)
⇒ 2∠ADC = 180°
⇒ ∠ADC = 90° — (iii)
- One of the interior angles is right angle.
Thus, from (i), (ii) and (iii) given quadrilateral ABCD is a square.
- Hence Proved
Step-by-step explanation:
Given:-
ABCD is a rectangle in which diagonal AC bisects ∠A as well as ∠C.
Explanation:-
(i) ∠DAC = ∠DCA (AC bisects ∠A as well as ∠C)
⇒ AD = CD (Sides opposite to equal angles of a triangle are equal)
also, CD = AB (Opposite sides of a rectangle)
AB = BC = CD = AD
Thus, ABCD is a