Show that if the diagonals of a Quadrilateral are equal and bisect each other at right angles.Then it is a Square.
Answers
Given,
Diagonals are equal
AC=BD .......(1)
and the diagonals bisect each other at right angles
OA=OC;OB=OD ...... (2)
∠AOB= ∠BOC= ∠COD= ∠AOD= 90°
..........(3)
Proof:
Consider △AOB and △COB
OA=OC ....[from (2)]
∠AOB= ∠COB
OB is the common side
Therefore,
△AOB≅ △COB
From SAS criteria, AB=CB
Similarly, we prove
△AOB≅ △DOA, so AB=AD
△BOC≅ △COD, so CB=DC
So, AB=AD=CB=DC ....(4)
So, in quadrilateral ABCD, both pairs of opposite sides are equal, hence ABCD is parallelogram
In △ABC and △DCB
AC=BD ...(from (1))
AB=DC ...(from (4))
BC is the common side
△ABC≅ △DCB
So, from SSS criteria, ∠ABC= ∠DCB
Now,
AB∥CD,BC is the tansversal
∠B+∠C= 180°
∠B+∠B= 180°
∠B= 90°
Hence, ABCD is a parallelogram with all sides equal and one angle is 90°
So, ABCD is a square.
Hence proved.
solution
Step-by-step explanation:
Given that ABCD is a square.
To prove : AC=BD and AC and BD bisect each other at right angles.
Proof:
(i) In a ΔABC and ΔBAD,
AB=AB ( common line)
BC=AD ( opppsite sides of a square)
∠ABC=∠BAD ( = 90° )
ΔABC≅ΔBAD( By SAS property)
AC=BD ( by CPCT).
(ii) In a ΔOAD and ΔOCB,
AD=CB ( opposite sides of a square)
∠OAD=∠OCB ( transversal AC )
∠ODA=∠OBC ( transversal BD )
ΔOAD≅ΔOCB (ASA property)
OA=OC ---------(i)
Similarly OB=OD ----------(ii)
From (i) and (ii) AC and BD bisect each other.
Now in a ΔOBA and ΔODA,
OB=OD ( from (ii) )
BA=DA
OA=OA ( common line )
ΔAOB=ΔAOD----(iii) ( by CPCT
∠AOB+∠AOD=180° (linear pair)
2∠AOB=180°
∠AOB=∠AOD=90°
∴AC and BD bisect each other at right angles.