Show that if the diagonals of a quadrilateral bisect each other at right angles, then it
is a rhombus.
Answers
Answered by
0
The diagonals are AC and BD
Let the diagonals bisect each other at O.
In ΔAOBandΔAOD
OA=OA (common)
OB=OD (given the bisect)
∠AOB=∠AOD (each 90
0
)
∴ΔAOB≅ΔAOD (SAS criteria)
The corresponding parts are equal.
AB=AD
Similarly, AB=BC
BC=CD
CD=AD
∴AB=BC=CD=DA
i.e. the quadrilateral is a Rhombus
Answered by
2
Step-by-step explanation:
Take quadrilateral ABCD , AC and BD are diagonals which intersect at O.
In △AOB and △AOD
DO=OB ∣ O is the midpoint
AO=AO ∣ Common side
∠AOB=∠AOD ∣ Right angle
So, △AOB≅△AOD
So, AB=AD
Similarly, AB=BC=CD=AD can be proved which means that ABCD is a rhombus.
Attachments:
Similar questions