Math, asked by Anonymous, 1 month ago

show that if the diagonals of a quadrilateral bisect each other at right angles then it is a rhombus​

Answers

Answered by nikhilrajgone2008
1

Answer:

Take quadrilateral ABCD , AC and BD are diagonals which intersect at O.

In △AOB and △AOD

DO=OB ∣ O is the midpoint

AO=AO ∣ Common side

∠AOB=∠AOD ∣ Right angle

So, △AOB≅△AOD

So, AB=AD

Similarly, AB=BC=CD=AD can be proved which means that ABCD is a rhombus.

Step-by-step explanation:

please make as brilliant and thanks

Answered by nihasrajgone2005
1

Answer:

Take quadrilateral ABCD , AC and BD are diagonals which intersect at O.

In △AOB and △AOD

DO=OB ∣ O is the midpoint

AO=AO ∣ Common side

∠AOB=∠AOD ∣ Right angle

So, △AOB≅△AOD

So, AB=AD

Similarly, AB=BC=CD=AD can be proved which means that ABCD is a rhombus.

Step-by-step explanation:

please give thanks to all my answer and please f-o-l-l-o-w m-e

Similar questions