show that if the diagonals of the quadileteral are equal and bisect each other at right angle then it is a square
Answers
Step-by-step explanation:
Let us consider a quadrilateral ABCD in which the diagonals AC and BD intersect each other at O. It is given that the diagonals of ABCD are equal and bisect each other at right angles. Therefore, AC = BD, OA = OC, OB = OD, and ∠AOB = ∠BOC = ∠COD = ∠AOD = 90º.
Now, to prove ABCD is a square, we have to prove that ABCD is a parallelogram, AB = BC = CD = AD, and one of its interior angles is 90º.
Proof:
In ΔAOB and ΔCOD,
AO = CO (Diagonals bisect each other)
OB = OD (Diagonals bisect each other)
∠AOB = ∠COD (Vertically opposite angles)
∴ ΔAOB ≅ ΔCOD (SAS congruence rule)
∴ AB = CD (By CPCT) ... (1)
And, ∠OAB = ∠OCD (By CPCT)
However, these are alternate interior angles for line AB and CD and alternate interior angles are equal to each other only when the two lines are parallel.
∴ AB || CD ... (2)
From equations (1) and (2), we obtain
ABCD is a parallelogram.
In ΔAOD and ΔCOD,
AO = CO (Diagonals bisect each other)
∠AOD = ∠COD (Given that each is 90º)
OD = OD (Common)
∴ ΔAOD ≅ ΔCOD (SAS congruence rule)
∴ AD = DC ... (3)
However, AD = BC and AB = CD (Opposite sides of parallelogram ABCD)
∴ AB = BC = CD = DA
Therefore, all the sides of quadrilateral ABCD are equal to each other.
In ΔADC and ΔBCD,
AD = BC (Already proved)
AC = BD (Given)
DC = CD (Common)
∴ ΔADC ≅ ΔBCD (SSS Congruence rule)
∴ ∠ADC = ∠BCD (By CPCT)
However, ∠ADC + ∠BCD = 180° (Co-interior angles)
⇒ ∠ADC + ∠ADC = 180°
⇒ 2∠ADC = 180°
⇒ ∠ADC = 90°
One of the interior angles of quadrilateral ABCD is a right angle.
Thus, we have obtained that ABCD is a parallelogram, AB = BC = CD = AD and one of its interior angles is 90º. Therefore, ABCD is a square.
Step-by-step explanation:
Given that ABCD is a square.
To prove : AC=BD and AC and BD bisect each other at right angles.
Proof:
(i) In a ΔABC and ΔBAD,
AB=AB ( common line)
BC=AD ( opppsite sides of a square)
∠ABC=∠BAD ( = 90° )
ΔABC≅ΔBAD( By SAS property)
AC=BD ( by CPCT).
(ii) In a ΔOAD and ΔOCB,
AD=CB ( opposite sides of a square)
∠OAD=∠OCB ( transversal AC )
∠ODA=∠OBC ( transversal BD )
ΔOAD≅ΔOCB (ASA property)
OA=OC ---------(i)
Similarly OB=OD ----------(ii)
From (i) and (ii) AC and BD bisect each other.
Now in a ΔOBA and ΔODA,
OB=OD ( from (ii) )
BA=DA
OA=OA ( common line )
ΔAOB=ΔAOD----(iii) ( by CPCT
∠AOB+∠AOD=180° (linear pair)
2∠AOB=180°
∠AOB=∠AOD=90°
∴AC and BD bisect each other at right angles.