show that if the roots of the following quodratic
equation are
equal, then ad=bc x^2(a^2+b^2)+2(ac+bd)+(c^2+d^2)=0
Answers
Answered by
0
Answer:
ad=bc
Step-by-step explanation:
for equal roots ,b²-4ac=0
a=(a²+b²) , b=2(ac+bd) , c=(c²+d²)
b²-4ac =0 = (2(ac+bd))²-4*(a²+b²)*(c²+d²)
= 4(a²c²+2abcd+b²d²)-4(a²c²+a²d²+b²c²+b²d²)=0
4(a²c²+2abcd+b²d²)=4(a²c²+a²d²+b²c²+b²d²)
a²c²+2abcd+b²d²=a²c²+a²d²+b²c²+b²d²
2abcd=a²d²+b²c²
(ad)²+(bc)²-2abcd=0
by using identity,a²+b²-2ab=(a-b)²
we have ((ad)²-(bc))²=0
(ad)²=(bc)²
taking square root
ad=bc
hence proved
Similar questions