Math, asked by samyrabudhwani833, 1 year ago

show that in an isosceles triangle the angles opposites to the eqal sides are eqal

Answers

Answered by EmadAhamed
3
↑ Here is your answer 
_____________________________________________________________
_____________________________________________________________

Consider this triangle,

The median of an isosceles triangle is also an altitude,

In \triangle ACD and \triangle BCD,

CD = CD {Common sides}

AD = DB {D is the midpoint}

AC = BC {Equal sides of isosceles triangle}

∴ \triangle ACD \cong \triangle BCD    (SSS Criterion)

=> \angle A = \angle B {CPCT}
Attachments:
Answered by nitthesh7
1
Let ABD be an isosceles triangle with AB = AD and AC be height.

(Refer Attachment)
_________________________________________________________

In ΔABC and ΔACD

∠ACB = ∠ACD                      (right angles)

     AB = AD                           (isosceles triangle)

     AC = AC                           (common)

By RHS rule, 
  
ΔABC congruent to ΔACD

By CPCT,

∠ABC = ∠ADC
________________________________________________________

Hence In an isosceles triangle the angles opposites to the equal sides are

equal.
________________________________________________________

☺☺☺ Hope this Helps ☺☺☺
Attachments:

nitthesh7: if this helped u a lot pls mark it as brainliest
EmadAhamed: Nice ans. ^.^
nitthesh7: thanks bro
Similar questions