Math, asked by kashvi184, 1 year ago

Show that lim n tends to infinity [1/n + 1/n+1 + 1/n+2 +...+ 1/3n] = log 3

Answers

Answered by anirudhayadav393
0

Concept:

Limit is used to give values to functions which does not have defined values. It is used in mathematical physics.

Given:

The equation \lim_{n \to \infty}[\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2} +......+\frac{1}{3n}]=\log3

Find:

Proof the equation.

Solution:

According to the problem,

S= \lim_{n \to \infty}[\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2} +......+\frac{1}{3n}]

S= \lim_{n \to \infty} [\frac{1}{n}\sum^{2n}_{r=0}\frac{1}{n+r}  ]

S= \lim_{n \to \infty} [\frac{1}{n}\sum^{2n}_{r=0}\frac{n}{n+r}  ]

= \lim_{n \to \infty} [\frac{1}{n}\sum^{2n}_{r=0}\frac{1}{1+(\frac{r}{n}) }  ]

Now lower the limit \lim_{n \to \infty} \frac{r}{n}=0

Since, r=0 for the first term.

Upper limit \lim_{n \to \infty} \frac{r}{n}

Since, r=2n for the last term.

S= \lim_{n \to \infty} [\frac{1}{n}\sum^{2n}_{r=0}\frac{1}{1+\frac{r}{n} }  ]

S= \int\limits^2_0 {\frac{1}{x} } \, dx

=[\log(1+x)]^2_0

=\log3

Thus L.H.S=R.H.S

Hence, when limit n tends to infinity when the series becomes \log3 proofing the equation.

Similar questions