Show that lines represented by equation x2-2xy-3y2=0 are distinct
Answers
Answered by
14
Step-by-step explanation:
Comparing the equation x2 + 2xy - y2 = 0 with ax2 + 2hxy + by2 = 0, we get,
a = 1, 2h = 2 i,e, h = 1, and b = - 1
∴ h2 - ab = (1)2 - 1(- 1) = 1 + 1 = 2 > 0
Since the equation x2 + 2xy - y2 = 0 is a homogeneous equation of second degree and h2 - ab > 0, the given equation represents a pair of lines which are real and distinct.
Answered by
2
Answer:
Step-by-step explanation:
Similar questions