Math, asked by pranayasesil, 4 months ago

show that log 162/343 + 2 log 7/9 - log 1/7= log 2

Answers

Answered by BrainlyPopularman
12

TO PROVE :

 \\ \bf \implies\log \left(\dfrac{162}{343} \right) + 2  \log \left(\dfrac{7}{9} \right) - \log\left(\dfrac{1}{7} \right) = \log(2)\\

SOLUTION :

• Let's take L.H.S –

 \\ \bf \:  \:  =  \:  \: \log \left(\dfrac{162}{343} \right) + 2  \log \left(\dfrac{7}{9} \right) - \log\left(\dfrac{1}{7} \right)\\

• Using identity –

 \\ \large\to \red{ \boxed{ \bf m\log \left(n\right) = \log( {n}^{m} )}}\\

• So that –

 \\ \bf \:  \:  =  \:  \: \log \left(\dfrac{162}{343} \right) +\log \left[\left(\dfrac{7}{9} \right)^{2} \right]- \log\left(\dfrac{1}{7} \right)\\

 \\ \bf \:  \:  =  \:  \: \log \left(\dfrac{162}{343} \right) +\log \left(\dfrac{49}{81} \right)- \log\left(\dfrac{1}{7} \right)\\

 \\ \bf \:  \:  =  \:  \: \log \left(\dfrac{162}{343} \right) +\log \left(\dfrac{49}{81} \right) +  \log\left[\left(\dfrac{1}{7} \right)^{ - 1}\right] \\

 \\ \bf \:  \:  =  \:  \: \log \left(\dfrac{162}{343} \right) +\log \left(\dfrac{49}{81} \right) +  \log(7)\\

• Using identity –

 \\ \large\to \red{ \boxed{ \bf \log (p) +  log(q) +  log(r) = \log(pqr)}}\\

• So that –

 \\ \bf \:  \:  =  \:  \: \log \left(\dfrac{162}{343} \times \dfrac{49}{81} \times 7\right)\\

 \\ \bf \:  \:  =  \:  \: \log \left(\dfrac{162}{343} \times \dfrac{343}{81}\right)\\

 \\ \bf \:  \:  =  \:  \: \log \left(\dfrac{162}{81}\right)\\

 \\ \bf \:  \:  =  \:  \: \log(2)\\

 \\ \bf \:  \:  =  \:  \:R.H.S. \\

 \\ \bf \longrightarrow \: \:\red { \underbrace{Hence \:  \: Proved}}\\

Answered by prabhas24480
2

TO PROVE :–

 \\ \bf \implies\log \left(\dfrac{162}{343} \right) + 2  \log \left(\dfrac{7}{9} \right) - \log\left(\dfrac{1}{7} \right) = \log(2)\\

SOLUTION :–

• Let's take L.H.S –

 \\ \bf \:  \:  =  \:  \: \log \left(\dfrac{162}{343} \right) + 2  \log \left(\dfrac{7}{9} \right) - \log\left(\dfrac{1}{7} \right)\\

• Using identity –

 \\ \large\to \red{ \boxed{ \bf m\log \left(n\right) = \log( {n}^{m} )}}\\

• So that –

 \\ \bf \:  \:  =  \:  \: \log \left(\dfrac{162}{343} \right) +\log \left[\left(\dfrac{7}{9} \right)^{2} \right]- \log\left(\dfrac{1}{7} \right)\\

 \\ \bf \:  \:  =  \:  \: \log \left(\dfrac{162}{343} \right) +\log \left(\dfrac{49}{81} \right)- \log\left(\dfrac{1}{7} \right)\\

 \\ \bf \:  \:  =  \:  \: \log \left(\dfrac{162}{343} \right) +\log \left(\dfrac{49}{81} \right) +  \log\left[\left(\dfrac{1}{7} \right)^{ - 1}\right] \\

 \\ \bf \:  \:  =  \:  \: \log \left(\dfrac{162}{343} \right) +\log \left(\dfrac{49}{81} \right) +  \log(7)\\

• Using identity –

 \\ \large\to \red{ \boxed{ \bf \log (p) +  log(q) +  log(r) = \log(pqr)}}\\

• So that –

 \\ \bf \:  \:  =  \:  \: \log \left(\dfrac{162}{343} \times \dfrac{49}{81} \times 7\right)\\

 \\ \bf \:  \:  =  \:  \: \log \left(\dfrac{162}{343} \times \dfrac{343}{81}\right)\\

 \\ \bf \:  \:  =  \:  \: \log \left(\dfrac{162}{81}\right)\\

 \\ \bf \:  \:  =  \:  \: \log(2)\\

 \\ \bf \:  \:  =  \:  \:R.H.S. \\

 \\ \bf \longrightarrow \: \:\red { \underbrace{Hence \:  \: Proved}}\\

Similar questions