Math, asked by pranay7757, 1 year ago

show that log square root 8+log square root 27-logsquare root125/log6-log5=3/2​

Answers

Answered by brunoconti
4

Answer:

Step-by-step explanation:

Attachments:

pranay7757: thank you
brunoconti: anytime
Answered by TRISHNADEVI
15
 \red{ \huge{ \underline{ \overline {\mid{ \bold{ \purple{ \: \: SOLUTION \: \: \red{ \mid}}}}}}}}



 \bold{L.H.S. = \frac{ log \sqrt{8} \: + \: log \sqrt{27} \: - \: log \sqrt{125}}{log \: 6 \: - \: log \: 5} } \\ \\ \\ \bold{ = \frac{log \: (8) {}^{ \frac{1}{2} } \: + \: log \: (27) {}^{\frac{1}{2} } \: - \: log \: (125) {}^{ \frac{1}{2} } }{log \: (2 \times 3) \: - \: log \: 5} } \\ \\ \\ \bold{ = \frac{log \:( 2 {}^{3} ) {}^{ \frac{1}{2} } \: + \: log \: (3 {}^{3} ) {}^{ \frac{1}{2} } \: - \: log \: (5 {}^{3} ) {}^{ \frac{1}{2} } }{log \: 2 \: + \: log \: 3 \: - \: log \: 5} } \\ \\ \\ \bold{ = \frac{log \: (2 ){}^{ \frac{3}{2} } \: + \: log \: (3) {}^{ \frac{3}{2} } \: - \: log \: (5) {}^{ \frac{3}{2} } }{log \: 2 \: + \: log \: 3 \: - \: log \: 5} } \\ \\ \\ \bold{ = \frac{ \frac{3}{2} \: log \: 2 \: + \: \frac{3}{2} \: log \: 3 \: - \: \frac{3}{2} \: log \: 5 }{log \: 2 \: + \: log \: 3 \: - \: log \: 5} } \\ \\ \\ \bold{ = \frac{ \frac{3}{2} \: \cancel{ (log \: 2 \: + \: log \: 3 \: - \: log \: 5)}}{ \cancel{log \: 2 \: + \: log \: 3 \: - \: log \: 5}} } \\ \\ \\ \bold{ = \frac{3}{2} } \\ \\ \\ \bold{ = R.H.S.}


 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \underline{ \bold{ \: \: Hence \: \: proved. \: }}



 \underline{ \underline{ \bold{ \huge{ \red{ \: \: IDENTITIES \: \: USE \: \: }}}}}



 \bold{1. \: \: log \: \sqrt{a} = log \: a {}^{ \frac{1}{2} } } \\ \\ \\ \bold{2. \: \: log \: a {}^{x} = x \: log \: a } \\ \\ \\ \bold{3. \: \: log \: (a {}^{x} ) {}^{y} = log \: a {}^{xy} } \\ \\ \\ \bold{4. \: \: log \: (x \times y) = log \: x + log \: y}

pranay7757: thank you
Similar questions