Math, asked by ashishgautamag0293, 10 months ago

show that log (x^2/yz) + log(y^2/zx) + log (z^2/xy) = 0​

Answers

Answered by 217him217
13

Step-by-step explanation:

= log(x²/yz) + log(y²/zx) + log(z²/xy)

= log( (x²*y²*z²)/(yz*zx*xy) )

= log( (x²y²z²)/(x²y²z²) )

= log(1)

= 0

Answered by Anonymous
105

Question :

Show that

 \sf \log( \frac{x {}^{2} }{yz} )  +  \log( \frac{y {}^{2} }{zx} ) +  \log( \frac{z {}^{2} }{xy}) = 0

Formula's Used :

 \sf1) \log x + \log \: y =  \log \:xy

 \sf2) \log( \frac{x}{y}) =  \log \: x -  \log \: y

 \sf3) \log \: x {}^{n}  = n \log \:x

Solution :

LHS

 \sf =  log( \frac{x {}^{2} }{yz} )  +  log( \frac{y {}^{2} }{zx} )  +  log( \frac{z {}^{2} }{xy} )

We know that

 \sf \log (\frac{x}{y}) =  \log \: x -  \log \: y

 \sf =  log(x {}^{2} )  -  log(yz)  +  log(y {}^{2} )  -  log(zx)  +  log(z {}^{2} )  -  log(xy)

 \sf =  logx {}^{2} +  logy {}^{2}   +  logz{}^{2}  - ( \log \: xy +  \log \: yz +  \log \: zx)

Now use property

log a + log b = log ab

 \sf =  \log(x {}^{2} y {}^{2} z {}^{2} ) -  \log(xy \times yz \times zx)

 \sf =  \log(x {}^{2}y {}^{2} z {}^{2}) -  \log(x {}^{2}  y {}^{2} z {}^{2} )

 \sf = 0

RHS = 0

Thus LHS = RHS

Hence proved

Similar questions