Math, asked by jitesgh, 5 months ago

show that log (x^2/yz) + log(y^2/zx) + log (z^2/xy) = 0​

Answers

Answered by Anonymous
18

\;\;\underline{\textbf{\textsf{ To Prove :-}}}

 \sf \log( \frac{x {}^{2} }{yz} )  +  \log( \frac{y {}^{2} }{zx} ) +  \log( \frac{z {}^{2} }{xy}) = 0

\;\;\underline{\textbf{\textsf{ Proof :-}}}

LHS

 \sf log( \frac{x {}^{2} }{yz} )  +  log( \frac{y {}^{2} }{zx} )  +  log( \frac{z {}^{2} }{xy} )

 \sf   \dashrightarrow log(x {}^{2} )  -  log(yz)  +  log(y {}^{2} )  -  log(zx)  +  log(z {}^{2} )  -  log(xy)

 \sf \dashrightarrow   logx {}^{2} +  logy {}^{2}   +  logz{}^{2}  - ( \log \: xy +  \log \: yz +  \log \: zx)

 \sf  \dashrightarrow  \log(x {}^{2} y {}^{2} z {}^{2} ) -  \log(xy \times yz \times zx)

 \sf \dashrightarrow   \log(x {}^{2}y {}^{2} z {}^{2}) -  \log(x {}^{2}  y {}^{2} z {}^{2} )

 \sf \dashrightarrow  0

 \sf \dashrightarrow RHS

\;\;\underline{\textbf{\textsf{ Hence-}}}

(Proved)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\;\;\underline{\textbf{\textsf{ Need to Know -}}}

 \sf1) \log x + \log \: y =  \log \:xy

 \sf2) \log( \frac{x}{y}) =  \log \: x -  \log \: y

 \sf3) \log \: x {}^{n}  = n \log \:x

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by JayDevidar
1

Answer:

Yeahhhhhhhhhhh

Mark me as brainliest

Similar questions