Math, asked by jakirrohman27, 7 months ago

show that
log y-log z. log z-log x.
(yz). ×(zx). ×
log z-log y
(xy). =1​

Answers

Answered by BrainlyPrince727
1

Prove:

x

log

10

(

y

)

log

10

(

z

)

y

log

10

(

z

)

log

10

(

x

)

z

log

10

(

x

)

log

10

(

y

)

=

1

Use the base 10 logarithm on both sides:

log

10

(

x

log

10

(

y

)

log

10

(

z

)

y

log

10

(

z

)

log

10

(

x

)

z

log

10

(

x

)

log

10

(

y

)

)

=

log

10

(

1

)

The right side becomes 0:

log

10

(

x

log

10

(

y

)

log

10

(

z

)

)

+

log

10

(

y

log

10

(

z

)

log

10

(

x

)

)

+

log

10

(

z

log

10

(

x

)

log

10

(

y

)

)

=

0

Use the property of logarithms  

log

b

(

a

c

d

)

=

log

b

(

a

)

(

c

d

)

log

10

(

x

)

(

log

10

(

y

)

log

10

(

z

)

)

+

log

10

(

y

)

(

log

10

(

z

)

log

10

(

x

)

)

+

log

10

(

z

)

(

log

10

(

x

)

log

10

(

y

)

)

=

0

Use the distributive property on all of the parenthesis:

log

10

(

x

)

log

10

(

y

)

log

10

(

x

)

log

10

(

z

)

+

log

10

(

y

)

log

10

(

z

)

log

10

(

y

)

log

10

(

x

)

+

log

10

(

z

)

log

10

(

x

)

log

10

(

z

)

log

10

(

y

)

)

=

0

Begin canceling terms:

log

10

(

x

)

log

10

(

y

)

log

10

(

x

)

log

10

(

z

)

+

log

10

(

y

)

log

10

(

z

)

log

10

(

y

)

log

10

(

x

)

+

log

10

(

z

)

log

10

(

x

)

log

10

(

z

)

log

10

(

y

)

)

=

0

log

10

(

x

)

log

10

(

z

)

+

log

10

(

y

)

log

10

(

z

)

+

log

10

(

z

)

log

10

(

x

)

log

10

(

z

)

log

10

(

y

)

)

=

0

+

log

10

(

y

)

log

10

(

z

)

log

10

(

z

)

log

10

(

y

)

=

0

0

=

0

Q.E.D.Prove:

x

log

10

(

y

)

log

10

(

z

)

y

log

10

(

z

)

log

10

(

x

)

z

log

10

(

x

)

log

10

(

y

)

=

1

Use the base 10 logarithm on both sides:

log

10

(

x

log

10

(

y

)

log

10

(

z

)

y

log

10

(

z

)

log

10

(

x

)

z

log

10

(

x

)

log

10

(

y

)

)

=

log

10

(

1

)

The right side becomes 0:

log

10

(

x

log

10

(

y

)

log

10

(

z

)

)

+

log

10

(

y

log

10

(

z

)

log

10

(

x

)

)

+

log

10

(

z

log

10

(

x

)

log

10

(

y

)

)

=

0

Use the property of logarithms  

log

b

(

a

c

d

)

=

log

b

(

a

)

(

c

d

)

log

10

(

x

)

(

log

10

(

y

)

log

10

(

z

)

)

+

log

10

(

y

)

(

log

10

(

z

)

log

10

(

x

)

)

+

log

10

(

z

)

(

log

10

(

x

)

log

10

(

y

)

)

=

0

Use the distributive property on all of the parenthesis:

log

10

(

x

)

log

10

(

y

)

log

10

(

x

)

log

10

(

z

)

+

log

10

(

y

)

log

10

(

z

)

log

10

(

y

)

log

10

(

x

)

+

log

10

(

z

)

log

10

(

x

)

log

10

(

z

)

log

10

(

y

)

)

=

0

Begin canceling terms:

log

10

(

x

)

log

10

(

y

)

log

10

(

x

)

log

10

(

z

)

+

log

10

(

y

)

log

10

(

z

)

log

10

(

y

)

log

10

(

x

)

+

log

10

(

z

)

log

10

(

x

)

log

10

(

z

)

log

10

(

y

)

)

=

0

log

10

(

x

)

log

10

(

z

)

+

log

10

(

y

)

log

10

(

z

)

+

log

10

(

z

)

log

10

(

x

)

log

10

(

z

)

log

10

(

y

)

)

=

0

+

log

10

(

y

)

log

10

(

z

)

log

10

(

z

)

log

10

(

y

)

=

0

0

=

0

Q.E.D.Prove:

x

log

10

(

y

)

log

10

(

z

)

y

log

10

(

z

)

log

10

(

x

)

z

log

10

(

x

)

log

10

(

y

)

=

1

Use the base 10 logarithm on both sides:

log

10

(

x

log

10

(

y

)

log

10

(

z

)

y

log

10

(

z

)

log

10

(

x

)

z

log

10

(

x

)

log

10

(

y

)

)

=

log

10

(

1

)

The right side becomes 0:

log

10

(

x

log

10

(

y

)

log

10

(

z

)

)

+

log

10

(

y

log

10

(

z

)

log

10

(

x

)

)

+

log

10

(

z

log

10

(

x

)

log

10

(

y

)

)

=

0

Use the property of logarithms  

log

b

(

a

c

d

)

=

log

b

(

a

)

(

c

d

)

log

10

(

x

)

(

log

10

(

y

)

log

10

(

z

)

)

+

log

10

(

y

)

(

log

10

(

z

)

log

10

(

x

)

)

+

log

10

(

z

)

(

log

10

(

x

)

log

10

(

y

)

)

=

0

Use the distributive property on all of the parenthesis:

log

10

(

x

)

log

10

(

y

)

log

10

(

x

)

log

10

(

z

)

+

log

10

(

y

)

log

10

(

z

)

log

10

(

y

)

log

10

(

x

)

+

log

10

(

z

)

log

10

(

x

)

log

10

(

z

)

log

10

(

y

)

)

=

0

Begin canceling terms:

log

10

(

x

)

log

10

(

y

)

log

10

(

x

)

log

10

(

z

)

+

log

10

(

y

)

log

10

(

z

)

log

10

(

y

)

log

10

(

x

)

+

log

10

(

z

)

log

10

(

x

)

log

10

(

z

)

log

10

(

y

)

)

=

0

log

10

(

x

)

log

10

(

z

)

+

log

10

(

y

)

log

10

(

z

)

+

log

10

(

z

)

log

10

(

x

)

log

10

(

z

)

log

10

(

y

)

)

=

0

+

log

10

(

y

)

log

10

(

z

)

log

10

(

z

)

log

10

(

y

)

=

0

0

=

0

Q.E.D.

Explanation:

We will not be writing base as  

10

, hence  

log

p

=

log

10

p

Now let  

x

a

=

y

b

, then  

a

log

x

=

b

log

y

and  

b

=

a

×

log

x

log

y

Hence  

x

log

y

log

z

=

y

(

log

y

log

z

)

×

log

x

log

y

and  

z

log

x

log

y

=

y

(

log

x

log

y

)

×

log

z

log

y

and hence

x

(

log

y

log

z

)

y

(

log

z

log

x

)

z

(

log

x

log

y

)

=  

y

(

(

log

y

log

z

)

×

log

x

log

y

)

y

(

log

z

log

x

)

y

(

(

log

x

log

y

)

×

log

z

log

y

)

=  

y

(

(

log

y

log

z

)

×

log

x

log

y

)

+

(

log

z

log

x

)

+

(

(

(

log

x

log

y

)

×

log

z

log

y

)

)

=  

y

log

x

log

z

log

x

log

y

+

log

z

log

x

+

log

x

log

z

log

y

log

z

=  

y

0

=

1

Answer link

Cesareo R.

Mar 20, 2017

See below.

Explanation:

x

log

(

y

z

)

y

log

(

z

x

)

z

log

(

y

x

)

=

1

or

log

(

y

z

)

log

(

x

)

+

log

(

z

x

)

log

(

y

)

+

log

(

y

x

)

log

(

z

)

=

0

or

(

y

z

)

log

(

x

)

(

z

x

)

log

(

y

)

(

x

y

)

log

(

z

)

=

1

or

x

log

(

z

y

)

y

log

(

x

z

)

z

log

(

y

x

)

=

1

=

x

log

(

y

z

)

y

log

(

z

x

)

z

log

(

y

x

)

=

x

log

(

z

y

)

y

log

(

x

z

)

z

log

(

y

x

)

then

x

log

(

z

y

)

y

log

(

x

z

)

z

log

(

y

x

)

=

1

x

log

(

z

y

)

y

log

(

x

z

)

z

log

(

y

x

)

so

x

log

(

z

y

)

y

log

(

x

z

)

z

log

(

y

x

)

=

1

is an identity.

Similar questions