Math, asked by ebizersudhirmeshram, 2 months ago

Show that matrix 0 0 1 0 1 0 1 0 0 is invertible find its inverse by adjoint method

Answers

Answered by MaheswariS
39

\underline{\textbf{Given:}}

\left(\begin{array}{ccc}0&0&1\\0&1&0\\1&0&0\end{array}\right)

\underline{\textbf{To prove:}}

\left(\begin{array}{ccc}0&0&1\\0&1&0\\1&0&0\end{array}\right)\;\textsf{is invertible}

\underline{\textbf{Solution:}}

A=\left(\begin{array}{ccc}0&0&1\\0&1&0\\1&0&0\end{array}\right)

|A|=\left|\begin{array}{ccc}0&0&1\\0&1&0\\1&0&0\end{array}\right|

\mathsf{|A|=0(0-0)-0(0-0)+1(0-1)}

\mathsf{|A|=-1}

\implies\mathsf{|A|\;\neq\;0}

\therefore\textbf{A is invertible}

\mathsf{Adjoint\;of\;A=(Cofactor\;matrix\;of\;A)^T}

\implies\mathsf{adj\,A=\left(\begin{array}{ccc}+(0-0)&-(0-0)&+(0-1)\\-(0-0)&+(0-1)&-(0-0)\\+(0-1)&-(0-0)&+(0-0)\end{array}\right)^T}

\implies\mathsf{adj\,A=\left(\begin{array}{ccc}0&0&-1\\0&-1&0\\-1&0&0\end{array}\right)^T}

\implies\mathsf{adj\,A=\left(\begin{array}{ccc}0&0&-1\\0&-1&0\\-1&0&0\end{array}\right)}

\mathsf{Now,}

\bf\,A^{-1}=\dfrac{1}{|A|}\,adj\,A

A^{-1}=\dfrac{1}{-1}\left(\begin{array}{ccc}0&0&-1\\0&-1&0\\-1&0&0\end{array}\right)

A^{-1}=-1\left(\begin{array}{ccc}0&0&-1\\0&-1&0\\-1&0&0\end{array}\right)

\boxed{\bf\,A^{-1}=\left(\begin{array}{ccc}0&0&1\\0&1&0\\1&0&0\end{array}\right)}

Similar questions