Show that n^2-n is divisible by 2 for every real number n
Answers
Answered by
10
Here is the answer to your question.
Any positive integer is of the form 2q or 2q + 1, where q is some integer
When n = 2q,
n²+n=(2q)²+2q
=4q²+2q
= 2q(2q+1)
which is divisible by 2
when n=2q+1
n²-n=(2q+1)²+(2q+1)
= 4q²+4q+1+2q+1
=4q²+6q +2
= 2(2q²+3q+1)
which is divisible by 2
hence n²+n is divisible by 2 for every positive integer n
Here is the answer to your question.
Any positive integer is of the form 2q or 2q + 1, where q is some integer
When n = 2q,
n²+n=(2q)²+2q
=4q²+2q
= 2q(2q+1)
which is divisible by 2
when n=2q+1
n²-n=(2q+1)²+(2q+1)
= 4q²+4q+1+2q+1
=4q²+6q +2
= 2(2q²+3q+1)
which is divisible by 2
hence n²+n is divisible by 2 for every positive integer n
Similar questions
Math,
9 days ago
History,
9 days ago
Math,
18 days ago
Computer Science,
8 months ago
Science,
8 months ago