Math, asked by vedantkulkarni49, 1 year ago

show that n square minus n is divisible by 2 for every positive integer n​

Answers

Answered by Anonymous
3
Casei: Let n be an even positive integer. When n = 2q  In this case , we have  n2 - n = (2q)2 - 2q = 4q2 - 2q = 2q (2q - 1 ) n2 - n = 2r , where r = q (2q - 1) n2 - n is divisible by 2

.
 Case ii: Let n be an odd positive integer. When n = 2q + 1 In this case  n2 -n = (2q + 1)2 - (2q + 1)= (2q +1) ( 2q+1 -1)= 2q (2q + 1) n2 - n = 2r , where  r = q (2q + 1) n2 - n is divisible by 2.∴  n 2 - n is divisible by 2 for every integer n

vedantkulkarni49: how n2-n =2r
Similar questions