Math, asked by yj47059, 8 months ago

Show that n³+1 will never leave a remainder 3 when divided by 4, where 'n' is a positive integer.

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\mathsf{n^3+1\;where\;n\;is\;positive\;integerr}

\underline{\textbf{To prove:}}

\mathsf{n^3+1\;will\;never\;leave\;a\;remainder\;3}

\underline{\textbf{Solution:}}

\underline{\textsf{Case(i): n is odd}}

\mathsf{Then,\;n=2k+1\;k=0,1,2\;.\;.\;.}

\mathsf{n^3+1}

\mathsf{=(2k+1)^3+1}

\mathsf{=(8k^3+12k^2+6k+1)+1}

\mathsf{=8k^3+12k^2+6k+2}

\mathsf{=(8k^3+12k^2+4k)+2k+2}

\mathsf{=4(2k^3+2k^2+k)+2(k+1)}

\mathsf{=a\;multiple\;of\;4+2(k+1)}

\mathsf{Remainder=2(k+1)\;is\;an\;even\;number}

\underline{\textsf{Case(ii): n is even }}

\mathsf{Then,\;n=2k\;where\;k=1,2,3\;.\;.}

\mathsf{n^3+1}

\mathsf{=(2k)^3+1}

\mathsf{=8k^3+1}

\mathsf{=4(2k^3)+1}

\mathsf{=a\;multiple\;of\;4+1}

\mathsf{Remainder=1}

\textsf{In both the cases, the remainder is not 3}

\therefore\mathsf{n^3+1\;}\textsf{will never leave a remainder 3}

\textsf{when divided by 4}

\underline{\textbf{Find more:}}

Similar questions