Physics, asked by deepanjalipande67, 1 year ago

Show that of all the rectangles of given area, the square has the smallest perimeter.​

Answers

Answered by Anonymous
18

ANSWER:-

Given:

Show that of all the rectangles of given area, the square has the smallest perimeter.

Solution:

Let x be the length and y be the breadth of rectangle whose area is A and perimeter is P.

P= 2(x+y)

 =  > p = 2(x +  \frac{A}{x} ) \:  \:  \:  \:  \:  \:  \: \: a = x.y \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: y =  \frac{A}{x}

For maximum or minimum value of perimeter P.

 \frac{dP}{dx}  = 2(1 -  \frac{A}{ {x}^{2} }) = 0 \\  \\  =  > 1 -   \frac{A }{ {x}^{2} }  = 0 \\  \\  =  >  {x}^{2}  - A= 0 \\  \\  =  >  {x}^{2}  = A \\  \\  =  > x =  \sqrt{A}   \:  \:  \: [Dimensions \: of \: rectangle \: is \: always \: positive]

Now,

 \frac{ {d}^{2} P}{d {x}^{2} }  = 2(0 - A \times  \frac{ - 1}{ {x}^{3} } ) =  \frac{2A}{ {x}^{3} }  \\  \\  =  > {}^{ \frac{ {d}^{2} P}{d {x}^{2} } } x =  \sqrt{a}  =  \frac{2a}{( \sqrt{A} ) {}^{3} }  > 0 \\ Hence, \\  =  > x =  \sqrt{A}  \:  P (Perimeter \: of \: rectangle) \: is \: smallest. \\ Therefore ;\\   =  > y =  \frac{A}{x}  =  \frac{a}{ \sqrt{A} }  =  \sqrt{A}

Hence,

For the smallest perimeter, length & breadth of rectangle are equal (x=y= √A)

So,

rectangle is square.

Hope it helps ☺️

Similar questions