Math, asked by urjathakur, 9 months ago

show that one and only one of N, N + 2 and n + 4 is divisible by 3​

Answers

Answered by samridh3215
1

Step-by-step explanation:

let N be any natural number

let N= 16

N = 16 (not divisible)

N+2 = 16+2 = 18 (divisible)

N+4 = 16+4 = 20 (not divisible)

only N+2 is divisible

hence proved

Answered by silentlover45
8

\underline\mathfrak{Solutions:-}

  • \: \: \: \: \: \: \: Let \: \: n \: \: be \: \: any \: \: integer \: \: of \: \: dividing \: \: n \: \: by \: \:  {3} \: \: \\ let \: \: q \: \: be \: \: the \: \: quotient \: \: and \: \: r \: \: be \: \: the \: \: remainder.

  • \: \: \: \: \: \: \: n \: \: = \: \: {3q}, \: \: {3q} \: + \: {1}, \: \: {3q} \: + \: {2} \\ \: \: \: \: \: {(by \: \: division \: \: algorithm)}

  • \: \: \: \: \: \: \: \underline{Case \: {1}}

\: \: \: \: \: \therefore \: n \: \: = \: \: {3q}

\: \: \: \: \: \leadsto \: n \: \: = \: \: {3q}

\: \: \: \: \: \leadsto \: n \: + \: {2} \: \: = \: \: {3q} \: + \: {2}

\: \: \: \: \: \leadsto \: n \: + \: {4} \: \: = \: \: {3q} \: + \: {4}

  • \: \: \: \: \: here, \: \: only \: \: n \: \: is \: \: divisible \: \: by \: \: {3}.

  • \: \: \: \: \: \: \: \underline{Case \: {2}}

\: \: \: \: \: \therefore \: n \: \: = \: \: {3q} \: + \: {1}

\: \: \: \: \: \leadsto \: n \: \: = \: \: {3q} \: + \: {1}

\: \: \: \: \: \leadsto \: n \: + \: {2}  \: \: = \: \: {3q} \: + \: {1} \: + \: {2} \: \: = \: \: {3q} \: + \: {3} \: \: = \: \: {3} \: {(q \: + \: {1})}

\: \: \: \: \: \leadsto \: n \: + \: {4} \: \: = \: \: {3q} \: + \: {1} \: + \: {4} \: \: = \: \: {3q} \: + \: {5}

  • \: \: \: \: \: here, \: \: only \: \: n \: + \: {2} \: \: is \: \: divisible \: \: by \: \: {3}.

  • \: \: \: \: \: \: \: \underline{Case \: {3}}

\: \: \: \: \: \therefore \: n \: \: = \: \: {3q} \: + \: {2}

\: \: \: \: \: \leadsto \: n \: \: = \: \: {3q} \: + \: {2}

\: \: \: \: \: \leadsto \: n \: + \: {2} \: \: = \: \: {3q} \: + \: {2} \: + \: {2} \: \: = \: \: {3q} \: + \: {4}

\: \: \: \: \: \leadsto \: n \: + \: {4} \: \: = \: \: {3q} \: + \: {2} \: + \: {4} \: \: = \: \: {3q} \: + \: {6} \: \: = \: \: {3} \: {(q \: + \: {2})}

  • \: \: \: \: \: here, \: \: only \: \: n \: + \: {4} \: \: is \: \: divisible \: \: by \: \: {3}.

  • \: \: \: \: \: Hence, \: \: one \: \: and \: \: only \: \: one \: \: let \: \: of \: \: n, \: \: n \: + \: {2}, \: \: n \: + \: {4} \: \: is \: \: divible \: \: by \: \: {3}.

__________________________________

Similar questions